World Library  
Flag as Inappropriate
Email this Article

Sill (geology)

Article Id: WHEBN0001105295
Reproduction Date:

Title: Sill (geology)  
Author: World Heritage Encyclopedia
Language: English
Subject: Dike (geology), Types of volcanic eruptions, Oligocene, Mount McKay, Geology of Skye
Collection: Sills (Geology), Subvolcanic Rocks, Volcanology
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Sill (geology)

Illustration showing the difference between a dike and a sill.
Salisbury Crags in Edinburgh, Scotland, a sill partially exposed during the ice ages
Mid-Carboniferous dolerite sill cutting Lower Carboniferous shales and sandstones, Horton Bluff, Minas Basin South Shore, Nova Scotia

In geology, a sill is a tabular sheet intrusion that has intruded between older layers of sedimentary rock, beds of volcanic lava or tuff, or even along the direction of foliation in metamorphic rock. The term sill is synonymous with concordant intrusive sheet. This means that the sill does not cut across preexisting rocks, in contrast to dikes, discordant intrusive sheets which do cut across older rocks. Sills are fed by dikes, except in unusual locations where they form in nearly vertical beds attached directly to a magma source. The rocks must be brittle and fracture to create the planes along which the magma intrudes the parent rock bodies, whether this occurs along preexisting planes between sedimentary or volcanic beds or weakened planes related to foliation in metamorphic rock. These planes or weakened areas allow the intrusion of a thin sheet-like body of magma paralleling the existing bedding planes, concordant fracture zone, or foliations.

Sills parallel beds (layers) and foliations in the surrounding country rock. They can be originally emplaced in a horizontal orientation, although tectonic processes may cause subsequent rotation of horizontal sills into near vertical orientations. Sills can be confused with solidified lava flows; however, there are several differences between them. Intruded sills will show partial melting and incorporation of the surrounding country rock. On both contact surfaces of the country rock into which the sill has intruded, evidence of heating will be observed (contact metamorphism). Lava flows will show this evidence only on the lower side of the flow. In addition, lava flows will typically show evidence of vesicles (bubbles) where gases escaped into the atmosphere. Because sills generally form at shallow depths (up to many kilometers) below the surface, the pressure of overlying rock prevents this from happening much, if at all. Lava flows will also typically show evidence of weathering on their upper surface, whereas sills, if still covered by country rock, typically do not.

Contents

  • Associated ore deposits 1
  • Transgressive sills 2
  • Other meanings 3
  • See also 4
  • References 5

Associated ore deposits

Certain layered intrusions are a variety of sill that often contain important ore deposits. Precambrian examples include the Bushveld, Insizwa and the Great Dyke complexes of southern Africa, the Duluth intrusive complex of the Superior District, and the Stillwater igneous complex of the United States. Phanerozoic examples are usually smaller and include the Rùm peridotite complex of Scotland and the Skaergaard igneous complex of east Greenland. These intrusions often contain concentrations of gold, platinum, chromium and other rare elements.

Transgressive sills

Despite their concordant nature, many large sills change stratigraphic level within the intruded sequence, with each concordant part of the intrusion linked by relatively short dike-like segments. Such sills are known as transgressive, examples include the Whin Sill and sills within the Karoo basin.[1][2] The geometry of large sill complexes in sedimentary basins has become clearer with the availability of 3D seismic reflection data.[3] Such data has shown that many sills have an overall saucer shape and that many others are at least in part transgressive.[4]

Other meanings

"Sill" may also refer to the rise in depth near the mouth of a fjord caused by the terminal moraine of the previous glacier.

See also

References

  1. ^ Holmes, A. 1978. Principles of Physical Geology, Van Nostrand Reinhold (UK)Co.Ltd., 720pp.
  2. ^ Polteau, S., Mazzini, A., Galland, O., Planke, S. & Malthe-Sørenssen, A. 2008. Saucer-shaped intrusions: Occurrences, emplacement and implications, Earth and Planetary Science Letters 266, 195–204.
  3. ^ Thomson, K. & Hutton, D. 2004. Geometry and growth of sill complexes: insights using 3D seismic from the North Rockall Trough, Bulletin of Volcanology, 66, 364–375.
  4. ^ Planke, S., Rasmussen, T., Rey, S.S. & Myklebust, R. 2005. Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins, In: Doré, A. G. & Vining, B. A. (eds) Petroleum Geology: North-West Europe and Global Perspectives — Proceedings of the 6th Petroleum Geology Conference, 833–844. Petroleum Geology Conferences Ltd. Published by the Geological Society, London.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.