This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate? Excessive Violence Sexual Content Political / Social
Email Address:
Article Id: WHEBN0000051531 Reproduction Date:
Geostatistics is a branch of statistics focusing on spatial or spatiotemporal datasets. Developed originally to predict probability distributions of ore grades for mining operations,^{[1]} it is currently applied in diverse disciplines including petroleum geology, hydrogeology, hydrology, meteorology, oceanography, geochemistry, geometallurgy, geography, forestry, environmental control, landscape ecology, soil science, and agriculture (esp. in precision farming). Geostatistics is applied in varied branches of geography, particularly those involving the spread of diseases (epidemiology), the practice of commerce and military planning (logistics), and the development of efficient spatial networks. Geostatistical algorithms are incorporated in many places, including geographic information systems (GIS) and the R statistical environment.
Geostatistics is intimately related to interpolation methods, but extends far beyond simple interpolation problems. Geostatistical techniques rely on statistical models that are based on random function (or random variable) theory to model the uncertainty associated with spatial estimation and simulation.
A number of simpler interpolation methods/algorithms, such as inverse distance weighting, bilinear interpolation and nearest-neighbor interpolation, were already well known before geostatistics.^{[2]} Geostatistics goes beyond the interpolation problem by considering the studied phenomenon at unknown locations as a set of correlated random variables.
Let Z(x) be the value of the variable of interest at a certain location x. This value is unknown (e.g. temperature, rainfall, piezometric level, geological facies, etc.). Although there exists a value at location x that could be measured, geostatistics considers this value as random since it was not measured, or has not been measured yet. However, the randomness of Z(x) is not complete, but defined by a cumulative distribution function (CDF) that depends on certain information that is known about the value Z(x):
Typically, if the value of Z is known at locations close to x (or in the neighborhood of x) one can constrain the CDF of Z(x) by this neighborhood: if a high spatial continuity is assumed, Z(x) can only have values similar to the ones found in the neighborhood. Conversely, in the absence of spatial continuity Z(x) can take any value. The spatial continuity of the random variables is described by a model of spatial continuity that can be either a parametric function in the case of variogram-based geostatistics, or have a non-parametric form when using other methods such as multiple-point simulation or pseudo-genetic techniques.
By applying a single spatial model on an entire domain, one makes the assumption that Z is a stationary process. It means that the same statistical properties are applicable on the entire domain. Several geostatistical methods provide ways of relaxing this stationarity assumption.
In this framework, one can distinguish two modeling goals:
A number of methods exist for both geostatistical estimation and multiple realizations approaches. Several reference books provide a comprehensive overview of the discipline.^{[5]}^{[6]}^{[7]}^{[8]}^{[9]}^{[10]}^{[11]}^{[12]}^{[13]}^{[14]}^{[15]}
Kriging is a group of geostatistical techniques to interpolate the value of a random field (e.g., the elevation, z, of the landscape as a function of the geographic location) at an unobserved location from observations of its value at nearby locations.
Multiple-indicator kriging (MIK) is a recent advance on other techniques for mineral deposit modeling and resource block model estimation, such as ordinary kriging. Initially, MIK showed considerable promise as a new method that could more accurately estimate overall global mineral deposit concentrations or grades.
Probability theory, Regression analysis, Mathematics, Observational study, Calculus
Forestry, Logging, Genetics, Agriculture, Botany
Geostatistics, Spatial analysis, Geographic information systems, Geographic Information Science, Raster graphics
Mining, Geostatistics, Extractive metallurgy, Geology, Regression analysis
Statistics, Regression analysis, Data, Geostatistics, Survey methodology
Rainfall, Geostatistics, Academic Press, Statistical independence, Random variables
Statistics, Geography, Quality control, Probability, Regression analysis