World Library  
Flag as Inappropriate
Email this Article

Fredholm operator

Article Id: WHEBN0000279722
Reproduction Date:

Title: Fredholm operator  
Author: World Heritage Encyclopedia
Language: English
Subject: Compact operator, Fredholm theory, Six degrees of Wikipedia, Fredholm alternative, Functional analysis
Collection: Fredholm Theory
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Fredholm operator

In mathematics, a Fredholm operator is an operator that arises in the Fredholm theory of integral equations. It is named in honour of Erik Ivar Fredholm.

A Fredholm operator is a bounded linear operator between two Banach spaces, with finite-dimensional kernel and cokernel, and with closed range. (The last condition is actually redundant.[1]) Equivalently, an operator T : X → Y is Fredholm if it is invertible modulo compact operators, i.e., if there exists a bounded linear operator

S: Y\to X

such that

\mathrm{Id}_X - ST \quad\text{and}\quad \mathrm{Id}_Y - TS

are compact operators on X and Y respectively.

The index of a Fredholm operator is

\mathrm{ind}\,T := \dim \ker T - \mathrm{codim}\,\mathrm{ran}\,T

or in other words,

\mathrm{ind}\,T := \dim \ker T - \mathrm{dim}\,\mathrm{coker}\,T;

see dimension, kernel, codimension, range, and cokernel.

Contents

  • Properties 1
  • Examples 2
  • Applications 3
  • B-Fredholm operators 4
  • Notes 5
  • References 6

Properties

The set of Fredholm operators from X to Y is open in the Banach space L(XY) of bounded linear operators, equipped with the operator norm. More precisely, when T0 is Fredholm from X to Y, there exists ε > 0 such that every T in L(XY) with ||TT0|| < ε is Fredholm, with the same index as that of T0.

When T is Fredholm from X to Y and U Fredholm from Y to Z, then the composition U \circ T is Fredholm from X to Z and

\mathrm{ind} (U \circ T) = \mathrm{ind}(U) + \mathrm{ind}(T).

When T is Fredholm, the transpose (or adjoint) operator T ′ is Fredholm from Y ′ to X ′, and ind(T ′) = −ind(T). When X and Y are Hilbert spaces, the same conclusion holds for the Hermitian adjoint T.

When T is Fredholm and K a compact operator, then T + K is Fredholm. The index of T remains unchanged under compact perturbations of T. This follows from the fact that the index i(s) of T + sK is an integer defined for every s in [0, 1], and i(s) is locally constant, hence i(1) = i(0).

Invariance by perturbation is true for larger classes than the class of compact operators. For example, when T is Fredholm and S a strictly singular operator, then T + S is Fredholm with the same index.[2] A bounded linear operator S from X to Y is strictly singular when its restriction to any infinite dimensional subspace X0 of X fails to be an into isomorphism, that is:

\inf \{ \|S x\| : x \in X_0, \, \|x\| = 1 \} = 0. \,

Examples

Let H be a Hilbert space with an orthonormal basis {en} indexed by the non negative integers. The (right) shift operator S on H is defined by

S(e_n) = e_{n+1}, \quad n \ge 0. \,

This operator S is injective (actually, isometric) and has a closed range of codimension 1, hence S is Fredholm with ind(S) = −1. The powers Sk, k ≥ 0, are Fredholm with index −k. The adjoint S is the left shift,

S^*(e_0) = 0, \ \ S^*(e_n) = e_{n-1}, \quad n \ge 1. \,

The left shift S is Fredholm with index 1.

If H is the classical Hardy space H2(T) on the unit circle T in the complex plane, then the shift operator with respect to the orthonormal basis of complex exponentials

e_n : \mathrm{e}^{\mathrm{i} t} \in \mathbf{T} \rightarrow \mathrm{e}^{\mathrm{i} n t}, \quad n \ge 0, \,

is the multiplication operator Mφ with the function φ = e1. More generally, let φ be a complex continuous function on T that does not vanish on T, and let Tφ denote the Toeplitz operator with symbol φ, equal to multiplication by φ followed by the orthogonal projection P from L2(T) onto H2(T):

T_\varphi : f \in H^2(\mathrm{T}) \rightarrow P(f \varphi) \in H^2(\mathrm{T}). \,

Then Tφ is a Fredholm operator on H2(T), with index related to the winding number around 0 of the closed path t ∈ [0, 2 π] → φ(e i t) : the index of Tφ, as defined in this article, is the opposite of this winding number.

Applications

The Atiyah-Singer index theorem gives a topological characterization of the index of certain operators on manifolds.

An elliptic operator can be extended to a Fredholm operator. The use of Fredholm operators in partial differential equations is an abstract form of the parametrix method.

B-Fredholm operators

For each integer n, define T_{n} to be the restriction of T to R(T^{n}) viewed as a map from R(T^{n}) into R(T^{n}) ( in particular T_{0} = T). If for some integer n the space R(T^{n}) is closed and T_{n} is a Fredholm operator,then T is called a B-Fredholm operator. The index of a B-Fredholm operator T is defined as the index of the Fredholm operator T_n . It is shown that the index is independent of the integer n. B-Fredholm operators were introduced by M. Berkani in 1999 as a generalization of Fredholm operators.[3]

Notes

  1. ^ Yuri A. Abramovich and Charalambos D. Aliprantis, "An Invitation to Operator Theory", p.156
  2. ^ T. Kato, "Perturbation theory for the nullity deficiency and other quantities of linear operators", J. d'Analyse Math. 6 (1958), 273–322.
  3. ^ Berkani Mohammed: On a class of quasi-Fredholm operators. Integral Equations and Operator Theory, 34, 2 (1999), 244-249 [1]

References

  • D.E. Edmunds and W.D. Evans (1987), Spectral theory and differential operators, Oxford University Press. ISBN 0-19-853542-2.
  • A. G. Ramm, "A Simple Proof of the Fredholm Alternative and a Characterization of the Fredholm Operators", American Mathematical Monthly, 108 (2001) p. 855 (NB: In this paper the word "Fredholm operator" refers to "Fredholm operator of index 0").
  • Fredholm operator at PlanetMath.org.
  • Weisstein, Eric W., "Fredholm's Theorem", MathWorld.
  • B.V. Khvedelidze (2001), "Fredholm theorems", in Hazewinkel, Michiel,  
  • Bruce K. Driver, "Compact and Fredholm Operators and the Spectral Theorem", Analysis Tools with Applications, Chapter 35, pp. 579–600.
  • Robert C. McOwen, "Fredholm theory of partial differential equations on complete Riemannian manifolds", Pacific J. Math. 87, no. 1 (1980), 169–185.
  • Tomasz Mrowka, A Brief Introduction to Linear Analysis: Fredholm Operators, Geometry of Manifolds, Fall 2004 (Massachusetts Institute of Technology: MIT OpenCouseWare)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.