World Library  
Flag as Inappropriate
Email this Article

Rift (geology)

Article Id: WHEBN0008813179
Reproduction Date:

Title: Rift (geology)  
Author: World Heritage Encyclopedia
Language: English
Subject: Red Sea, Geology of the Alps, Lake Torrens National Park, Evaporite, Hydrothermal vent, Index of geology articles, Polystrate fossil, Flood basalt, Terrane, Continental collision
Publisher: World Heritage Encyclopedia

Rift (geology)

Block view of a rift formed of three segments, showing the location of the accommodation zones between them at changes in fault location or polarity (dip direction)
Gulf of Suez rift showing main extensional faults

In geology, a rift is a linear zone where the Earth's crust and lithosphere are being pulled apart[1] and is an example of extensional tectonics.[2]

Typical rift features are a central linear downfaulted depression, called a graben, or more commonly a half-graben with normal faulting and rift-flank uplifts mainly on one side. Where rifts remain above sea level they form a rift valley, which may be filled by water forming a rift lake. The axis of the rift area may contain volcanic rocks, and active volcanism is a part of many, but not all active rift systems.

Major rifts occur along the central axis of most mid-ocean ridges, where new oceanic crust and lithosphere is created along a divergent boundary between two tectonic plates.

Failed rifts are the result of continental rifting that failed to continue to the point of break-up. Typically the transition from rifting to spreading develops at a triple junction where three converging rifts meet over a hotspot. Two of these evolve to the point of seafloor spreading, while the third ultimately fails, becoming an aulacogen.


Most rifts consist of a series of separate segments that together form the linear zone characteristic of rifts. The individual rift segments have a dominantly half-graben geometry, controlled by a single basin-bounding fault. Segment lengths vary between rifts, depending on the elastic thickness of the lithosphere. Areas of thick colder lithosphere, such as the Baikal Rift have segment lengths in excess of 80 km, while in areas of warmer thin lithosphere, segment lengths may be less than 30 km.[3] Along the axis of the rift the position, and in some cases the polarity (the dip direction), of the main rift bounding fault changes from segment to segment. Segment boundaries often have a more complex structure and generally cross the rift axis at a high angle. These segment boundary zones accommodate the differences in fault displacement between the segments and are therefore known as accommodation zones.

Accommodation zones take various forms, from a simple relay ramp at the overlap between two major faults of the same polarity, to zones of high structural complexity, particularly where the segments have opposite polarity. Accommodation zones may be located where older crustal structures intersect the rift axis. In the Gulf of Suez rift, the Zaafarana accommodation zone is located where a shear zone in the Arabian-Nubian Shield meets the rift.[4]

Rift development

Rift initiation

At the onset of rifting, the upper part of the lithosphere starts to extend on a series of initially unconnected normal faults, leading to the development of isolated basins.[5] In subaerial rifts, drainage at this stage is generally internal, with no element of through drainage.

Mature rift stage

As the rift evolves, some of the individual fault segments grow, eventually becoming linked together to form the larger bounding faults. Subsequent extension becomes concentrated on these faults. The longer faults and wider fault spacing leads to more continuous areas of fault-related subsidence along the rift axis. Significant uplift of the rift shoulders develops at this stage, strongly influencing drainage and sedimentation in the rift basins.[5]

Post-rift subsidence

During rifting, as the crust is thinned, the Earth's surface subsides and the Moho becomes correspondingly raised. At the same time, the mantle lithosphere becomes thinned, causing a rise of the top of the asthenosphere. Once rifting ceases, the mantle beneath the rift cools and this is accompanied by a broad area of post-rift subsidence. The amount of subsidence is directly related to the amount of thinning during the rifting phase calculated as the beta factor (initial crustal thickness divided by final crustal thickness), but is also affected by the degree to which the rift basin is filled at each stage, due to the greater density of sediments in contrast to water. The simple 'McKenzie model' of rifting, which considers the rifting stage to be instantaneous, provides a good first order estimate of the amount of crustal thinning from observations of the amount of post-rift subsidence.[6][7] This has generally been replaced by the 'flexural cantilever model', which takes into account the geometry of the rift faults and the flexural isostasy of the upper part of the crust.[8]

Multiphase rifting

Some rifts show a complex and prolonged history of rifting, with several distinct phases. The North Sea rift shows evidence of several separate rift phases from the Permian through to the Earliest Cretaceous,[9] a period of over 100 million years.


Many rifts are the sites of at least minor magmatic activity, particularly in the early stages of rifting.[10] Alkali basalts and bimodal volcanism are common products of rift-related magmatism.[11][12]

Economic importance

The sedimentary rocks associated with continental rifts host important deposits of both minerals and hydrocarbons.[13]

Mineral deposits

SedEx mineral deposits are found mainly in continental rift settings. They form within post-rift sequences when hydrothermal fluids associated with magmatic activity are expelled at the seabed.[14]

Oil and gas

Continental rifts are the sites of significant oil and gas accumulations, such as the Viking Graben and the Gulf of Suez Rift. Thirty percent of giant oil and gas fields are found within such a setting.[15] In 1999 it was estimated that there were 200 billion barrels of recoverable oil reserves hosted in rifts. Source rocks are often developed within the sediments filling the active rift (syn-rift), forming either in a lacustrine environment or in a restricted marine environment, although not all rifts contain such sequences. Reservoir rocks may be developed in pre-rift, syn-rift and post-rift sequences. Effective regional seals may be present within the post-rift sequence if mudstones or evaporites are deposited. Just over half of estimated oil reserves are found associated with rifts containing marine syn-rift and post-rift sequences, just under a quarter in rifts with a non-marine syn-rift and post-rift, and an eighth in non-marine syn-rift with a marine post-rift.[16]


See also


  1. ^ Decompressional Melting During Extension of Continental Lithosphere, Jolante van Wijk,
  2. ^ Plate Tectonics: Lecture 2, Geology Department at University of Leicester
  3. ^ Ebinger, C.J.; Jackson J.A., Foster A.N. & Hayward N.J. (1999). "Extensional basin geometry and the elastic lithosphere". Philosophical Transactions of the Royal Society A (The Royal Society) 357 (1753): 741–765. doi:10.1098/rsta.1999.0351. Retrieved 28 October 2012. 
  4. ^ Younes, A.I.; McClay K. (2002). "Development of Accommodation Zones in the Gulf of Suez-Red Sea Rift, Egypt". AAPG Bulletin 86 (6): 1003–1026. doi:10.1306/61EEDC10-173E-11D7-8645000102C1865D. Retrieved 29 October 2012. 
  5. ^ a b Withjack, M.O.; Schlische R.W. & Olsen P.E. (2002). "Rift-basin structure and its influence on sedimentary systems". In Renaut R.W. & Ashley G.M. Sedimentation in Continental Rifts. Special Publications 73. Society for Sedimentary Geology. Retrieved 28 October 2012. 
  6. ^ McKenzie, D. (1978). "Some remarks on the development of sedimentary basins". Earth and Planetary Science Letters (Elsevier) 40: 25–32. doi:10.1016/0012-821x(78)90071-7. Retrieved 25 October 2012. 
  7. ^ Kusznir, N.J.; Roberts A.M. & Morley C.K. (1995). "Forward and reverse modelling of rift basin formation". In Lambiase J.J. Hydrocarbon habitat in rift basins. Special Publications 80. London: Geological Society. pp. 33–56. ISBN . Retrieved 25 October 2012. 
  8. ^ Nøttvedt, A.; Gabrielsen R.H. & Steel R.J. (1995). "Tectonostratigraphy and sedimentary architecture of rift basins, with reference to the northern North Sea". Marine and Petroleum Geology (Elsevier) 12 (8): 881–901. doi:10.1016/0264-8172(95)98853-W. Retrieved 29 October 2012. 
  9. ^ Ravnås, R.; Nøttvedt A., Steel R.J. & Windelstad J. (2000). "Syn-rift sedimentary architectures in the Northern North Sea". Special Publications 167. London: Geological Society. pp. 133–177. ISBN Retrieved 28 October 2012. 
  10. ^ White, R.S.; McKenzie D. (1989). "Magmatism at Rift Zones: The Generation of Volcanic Margins and Flood Basalts". Journal of Geophysical Research (American Geophysical Union) 94 (B6): 7685–7729. doi:10.1029/jb094ib06p07685. Retrieved 27 October 2012. 
  11. ^ Farmer, G.L. (2005). "Continental Basaltic Rocks". In Rudnick R.L. Treatise on Geochemistry: The crust. Gulf Professional Publishing. p. 97. ISBN . Retrieved 28 October 2012. 
  12. ^ Cas, R.A.F. (2005). "Volcanoes and the geological cycle". In Marti J. & Ernst G.G. Volcanoes and the Environment. Cambridge University Press. p. 145. Retrieved 28 October 2012. 
  13. ^ United States Geological Survey (1993). "Lake Baikal - A Touchstone for Global Change and Rift Studies". Retrieved 28 October 2012. 
  14. ^ Groves, D.I.; Bierlein F.P. (2007). "Geodynamic settings of mineral deposit systems". Journal of the Geological Society (Geological Society) 164 (1): 19–30. doi:10.1144/0016-76492006-065. Retrieved 27 October 2012. 
  15. ^ Mann, P.; Gahagan L. & Gordon M.B. (2001). "Tectonic setting of the world’s giant oil fields". WorldOil Magazine. Retrieved 27 October 2012. 
  16. ^ Lambiase, J.J.; Morley C.K. (1999). "Hydrocarbons in rift basins: the role of stratigraphy". Philosophical Transactions of the Royal Society A (The Royal Society) 357: 677–900. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.