#jsDisabledContent { display:none; } My Account |  Register |  Help
 Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Proportional approval voting

Article Id: WHEBN0047010036
Reproduction Date:

 Title: Proportional approval voting Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Proportional approval voting

Proportional approval voting (PAV) is an extension of approval voting to multiple-winner elections. It allows each voter to vote for as many or as few candidates as they choose. It was first developed by Forest Simmons in 2001.[1]

## Contents

• Description 1
• Example 2
• See also 3
• References 4

## Description

PAV works by looking at how "satisfied" each voter is with each potential result or outcome of the election. The calculated satisfaction with any particular result for an individual voter is a function of how many of the elected candidates the individual originally voted for.[2] Under PAV, to calculate the satisfaction of an individual, only the elected candidates that the individual voted for are counted - the unsuccessful candidates that they voted for, as well as the elected candidates that they did not vote for are not taken into account. Assuming that an individual voted for n candidates that were successful, their satisfaction would be calculated using the formula[1]

1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}

Summing the satisfaction across all voters with any potential result gives the population's total satisfaction with that result. The total satisfaction is calculated for every possible set of candidates, and the set of candidates with the highest total satisfaction is deemed to be the winning set.

In an election with only one winner, PAV operates in exactly the same way as normal approval voting. If on the other hand, each voter voted exclusively for all of the candidates within a single party, PAV would function in the same way as the D'Hondt method of party-list proportional representation.

Counting the votes in PAV is NP-hard, making it a very computationally demanding voting method as the number of candidates and seats increase.[3] If there were c candidates and s seats, then there would be

\frac{c!}{s! (c-s)!}

combinations of candidates to compare with each election,[4] for example if there were 24 candidates for 4 seats, there would be 10,626 combinations to calculate total satisfaction for. An election requiring this many calculations would necessitate vote counting by computer.

## Example

2 seats to be filled, four candidates: Andrea (A), Brad (B), Carter (C), and Delilah (D). The ballots are:

• 5: AB
• 17: AC
• 8: D

There are 6 possible results: AB, AC, AD, BC, BD, and CD.

AB AC AD BC BD CD
Voters approving 2 successful candidates (satisfaction of 1 1/2) 5 17 0 0 0 0
Voters approving 1 successful candidate (satisfaction of 1) 17 5 30 22 13 25
Voters approving no successful candidates (satisfaction of 0) 8 8 0 8 17 5
Total satisfaction 24.5 30.5 30 22 13 25

Andrea and Carter are elected.

## References

1. ^ a b Kilgour, D. Marc (2010). "Approval Balloting for Multi-winner Elections". In Jean-François Laslier; M. Remzi Sanver. Handbook on Approval Voting. Springer. pp. 105–124.
2. ^ Aziz, H., Brill, M., Conitzer, V., et al. (2014): "Justified Representation in Approval-Based Committee Voting", arXiv:1407.8269 [1]
3. ^ Aziz, Haris; Serge Gaspers, Joachim Gudmundsson, Simon Mackenzie, Nicholas Mattei, Toby Walsh. "Computational Aspects of Multi-Winner Approval Voting" (PDF). Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems. pp. 107–115.
4. ^ Enric Plaza: "Technologies for political representation and accountability": p9 [2]
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.

Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.

By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.