World Library  
Flag as Inappropriate
Email this Article

Neumann–Dirichlet method

Article Id: WHEBN0016252996
Reproduction Date:

Title: Neumann–Dirichlet method  
Author: World Heritage Encyclopedia
Language: English
Subject: Neumann–Neumann methods, Schur complement method, Domain decomposition methods, Abstract additive Schwarz method, Mortar methods
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Neumann–Dirichlet method

In mathematics, the Neumann–Dirichlet method is a domain decomposition preconditioner which involves solving Neumann boundary value problem on one subdomain and Dirichlet boundary value problem on another, adjacent across the interface between the subdomains.[1] On a problem with many subdomains organized in a rectangular mesh, the subdomains are assigned Neumann or Dirichlet problems in a checkerboard fashion.

See also

References

  1. ^ O. B. Widlund, Iterative substructuring methods: algorithms and theory for elliptic problems in the plane, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987), SIAM, Philadelphia, PA, 1988, pp. 113–128.


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.