World Library  
Flag as Inappropriate
Email this Article

Monoisotopic mass

Article Id: WHEBN0003632985
Reproduction Date:

Title: Monoisotopic mass  
Author: World Heritage Encyclopedia
Language: English
Subject: Mass spectral interpretation, Molecular mass, Chemical infobox (data page), HighChem, Chemical properties
Collection: Chemical Properties, Mass Spectrometry
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Monoisotopic mass

The monoisotopic mass is the sum of the iron and argon the principle isotope is not the lightest isotope. The term is designed for measurements in mass spectrometry primarily with smaller molecules. It is not typically useful as a concept in physics or general chemistry. Monoisotopic mass is typically expressed in unified atomic mass units (u), also called daltons (Da).

Contents

  • Isotopic abundance 1
  • Context of usage 2
  • See also 3
  • References 4
  • External links 5

Isotopic abundance

The mass spectral peak representing the monoisotopic mass is not always the most abundant isotopic peak in a spectrum despite it containing the most abundant isotope for each atom. This is because as the number of atoms in a molecule increases, the probability that the entire molecule contains at least one heavy isotope atom also increases. For example if there are 100 carbon atoms in a molecule each of which has an approximately 1% chance of being a heavy isotope the whole molecule is highly likely to contain at least one heavy isotope atom and the most abundant isotopic composition will no longer be the same as the monoisotopic peak.

The monoisotopic peak is sometimes not observable for two primary reasons. First the monoisotopic peak may not be resolved from the other isotopic peaks. In this case only the average molecular mass may be observed. In some cases even when the isotopic peaks are resolved, such as with a high resolution mass spectrometer, the monoisotopic peak may be below the noise level and higher isotopes may dominate completely.

Context of usage

The monoisotopic mass is not used frequently in fields outside of mass spectrometry because other fields can not distinguish molecules of differing isotopic composition. For this reason mostly the average molecular mass or even more commonly the molar mass is used. For most purposes such as weighing out bulk chemicals only the molar mass is relevant since what one is weighing is a statistical distribution of varying isotopic compositions.

Isotopic masses can play an important role in physics but physics less often deals with molecules. Molecules differing by an isotope are sometimes distinguished from one another in molecular spectroscopy or related fields, however it is usually a single isotope change on a larger molecule that can be observed rather than the isotopic composition of an entire molecule. The isotopic substitution changes the vibrational frequencies of various bonds in the molecule, which can have observable effects on the chemical reactivity via the kinetic isotope effect, and even by extension the biological activity in some cases.

See also

References

  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "monoisotopic mass spectrum".

External links

  • A listing of isotope masses and abundances
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.