World Library  
Flag as Inappropriate
Email this Article

List of operators

Article Id: WHEBN0008339650
Reproduction Date:

Title: List of operators  
Author: World Heritage Encyclopedia
Language: English
Subject: Operator (mathematics), List of Fourier-related transforms, Apple Symbols, History of mathematical notation
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

List of operators

In mathematics, an operator or transform is a function from one space of functions to another. Operators occur commonly in engineering, physics and mathematics. Many are integral operators and differential operators.

In the following L is an operator

L:\mathcal{F}\to\mathcal{G}

which takes a function y\in\mathcal{F} to another function L[y]\in\mathcal{G}. Here, \mathcal{F} and \mathcal{G} are some unspecified function spaces, such as Hardy space, Lp space, Sobolev space, or, more vaguely, the space of holomorphic functions.

Expression Curve
definition
Variables Description
Linear transformations
L[y]=y^{(n)} \ Derivative of nth order
L[y]=\int_a^t y \,dt Cartesian y=y(x)
x=t
Integral, area
L[y]=y\circ f Composition operator
L[y]=\frac{y\circ t+y\circ -t}{2} Even component
L[y]=\frac{y\circ t-y\circ -t}{2} Odd component
L[y]=y\circ (t+1) - y\circ t = \Delta y Difference operator
L[y]=y\circ (t) - y\circ (t-1) = \nabla y Backward difference (Nabla operator)
L[y]=\sum y=\Delta^{-1}y Indefinite sum operator (inverse operator of difference)
L[y] =-(py')'+qy \, Sturm–Liouville operator
Non-linear transformations
F[y]=y^ \ Inverse function
F[y]=t\,y'^ - y\circ y'^ Legendre transformation
F[y]=f\circ y Left composition
F[y]=\prod y Indefinite product
F[y]=\frac{y'}{y} Logarithmic derivative
F[y]={\frac{ty'}{y}} Elasticity
F[y]={y' \over y'}-{3\over 2}\left({y\over y'}\right)^2 Schwarzian derivative
y'| \,dt Total variation
F[y]=\frac{1}{t-a}\int_a^t y\,dt Arithmetic mean
F[y]=\exp \left( \frac{1}{t-a}\int_a^t \ln y\,dt \right) Geometric mean
F[y]= -\frac{y}{y'} Cartesian y=y(x)
x=t
Subtangent
F[x,y]= -\frac{yx'}{y'} Parametric
Cartesian
x=x(t)
y=y(t)
F[r]= -\frac{r^2}{r'} Polar r=r(\phi)
\phi=t
F[r]=\frac{1}{2}\int_a^t r^2 dt Polar r=r(\phi)
\phi=t
Sector area
F[y]= \int_a^t \sqrt { 1 + y'^2 }\, dt Cartesian y=y(x)
x=t
Arc length
F[x,y]= \int_a^t \sqrt { x'^2 + y'^2 }\, dt Parametric
Cartesian
x=x(t)
y=y(t)
F[r]= \int_a^t \sqrt { r^2 + r'^2 }\, dt Polar r=r(\phi)
\phi=t
F[x,y] = \int_a^t\sqrt[3]{y}\, dt Cartesian y=y(x)
x=t
Affine arc length
F[x,y] = \int_a^t\sqrt[3]{x'y-xy'}\, dt Parametric
Cartesian
x=x(t)
y=y(t)
F[x,y,z]=\int_a^t\sqrt[3]{z'(x'y-y'x)+z(xy'-x'y)+z'(xy-xy)} Parametric
Cartesian
x=x(t)
y=y(t)
z=z(t)
F[y]=\frac{y}{(1+y'^2)^{3/2}} Cartesian y=y(x)
x=t
Curvature
F[x,y]= \frac{x'y-y'x}{(x'^2+y'^2)^{3/2}} Parametric
Cartesian
x=x(t)
y=y(t)
F[r]=\frac{r^2+2r'^2-rr}{(r^2+r'^2)^{3/2}} Polar r=r(\phi)
\phi=t
F[x,y,z]=\frac{\sqrt{(zy'-z'y)^2+(xz'-zx')^2+(yx'-xy')^2}}{(x'^2+y'^2+z'^2)^{3/2}} Parametric
Cartesian
x=x(t)
y=y(t)
z=z(t)
F[y]=\frac{1}{3}\frac{y'}{(y)^{5/3}}-\frac{5}{9}\frac{y^2}{(y)^{8/3}} Cartesian y=y(x)
x=t
Affine curvature
F[x,y]= \frac{xy-xy}{(x'y-xy')^{5/3}}-\frac{1}{2}\left[\frac{1}{(x'y-xy')^{2/3}}\right] Parametric
Cartesian
x=x(t)
y=y(t)
F[x,y,z]=\frac{z(x'y-y'x)+z(xy'-x'y)+z'(xy-xy)}{(x'^2+y'^2+z'^2)(x^2+y^2+z^2)} Parametric
Cartesian
x=x(t)
y=y(t)
z=z(t)
Torsion of curves
X[x,y]=\frac{y'}{yx'-xy'}

Y[x,y]=\frac{x'}{xy'-yx'}
Parametric
Cartesian
x=x(t)
y=y(t)
Dual curve
(tangent coordinates)
X[x,y]=x+\frac{ay'}{\sqrt {x'^2+y'^2}}

Y[x,y]=y-\frac{ax'}{\sqrt {x'^2+y'^2}}
Parametric
Cartesian
x=x(t)
y=y(t)
Parallel curve
X[x,y]=x+y'\frac{x'^2+y'^2}{xy'-yx'}

Y[x,y]=y+x'\frac{x'^2+y'^2}{yx'-xy'}
Parametric
Cartesian
x=x(t)
y=y(t)
Evolute
F[r]=t (r'\circ r^) Intrinsic r=r(s)
s=t
X[x,y]=x-\frac{x'\int_a^t \sqrt { x'^2 + y'^2 }\, dt}{\sqrt { x'^2 + y'^2 }}

Y[x,y]=y-\frac{y'\int_a^t \sqrt { x'^2 + y'^2 }\, dt}{\sqrt { x'^2 + y'^2 }}
Parametric
Cartesian
x=x(t)
y=y(t)
Involute
X[x,y]=\frac{(xy'-yx')y'}{x'^2 + y'^2}

Y[x,y]=\frac{(yx'-xy')x'}{x'^2 + y'^2}
Parametric
Cartesian
x=x(t)
y=y(t)
Pedal curve with pedal point (0;0)
X[x,y]=\frac{(x'^2-y'^2)y'+2xyx'}{xy'-yx'}

Y[x,y]=\frac{(x'^2-y'^2)x'+2xyy'}{xy'-yx'}
Parametric
Cartesian
x=x(t)
y=y(t)
Negative pedal curve with pedal point (0;0)
X[y] = \int_a^t \cos \left[\int_a^t \frac{1}{y} \,dt\right] dt

Y[y] = \int_a^t \sin \left[\int_a^t \frac{1}{y} \,dt\right] dt
Intrinsic y=r(s)
s=t
Intrinsic to
Cartesian
transformation
Metric functionals
F[y]= y =\sqrt{\int_E y^2 \, dt} Norm
F[x,y]=\int_E xy \, dt Inner product
F[x,y]=\arccos \left[\frac{\int_E xy \, dt}{\sqrt{\int_E x^2 \, dt}\sqrt{\int_E y^2 \, dt}}\right] Fubini-Study metric
(inner angle)
Distribution functionals
F[x,y] = x * y = \int_E x(s) y(t - s)\, ds Convolution
F[y] = \int_E y \ln y \, dy Differential entropy
F[y] = \int_E yt\,dt Expected value
F[y] = \int_E (t-\int_E yt\,dt)^2y\,dt Variance

See also

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.