World Library  
Flag as Inappropriate
Email this Article

Invertebrates

 

Invertebrates


Invertebrates are animal species that do not develop a vertebral column. This in effect includes all animals apart from the subphylum Vertebrata. Familiar examples of invertebrates include insects, worms, clams, crabs, octopus, snails, and starfish. Taxonomically speaking, "invertebrate" is no more than a term of convenience. The vast majority of animal species are invertebrates, because only about 3% of animal species include a vertebral column in their anatomy.[1] In other words all animals except those in the chordate subphylum Vertebrata (fish, amphibians, reptiles, birds, and mammals) are regarded as invertebrates. Furthermore, many individual invertebrate taxa have a greater number and variety of species than the entire subphylum of Vertebrata.[2] In fact some of the so-called invertebrata, such as the Chaetognatha and Hemichordata, are more closely related to the Chordata than to other invertebrate phyla.

Invertebrates form a massively paraphyletic group. It is generally accepted that the phyla comprising modern Metazoa share a common multicellular ancestor, but with the sole exception of one subphylum of the phylum Chordata, all those phyla are classified as invertebrates along with two of the three subphyla in the Chordata: Tunicata and Cephalochordata. These two, plus all the other known invertebrates, have only one cluster of Hox genes, while the vertebrates have duplicated their original cluster more than once. Within palaeozoology and palaeobiology, invertebrates are often studied within the fossil discipline called invertebrate paleontology.

Etymology

The word "invertebrate" derives from a prefixed form of the Latin word vertebra. Vertebra means a joint in general, and sometimes specifically a joint from the spinal column of a vertebrate. In turn the jointed aspect of vertebra derived from the concept of turning, expressed in the root verto or vorto, to turn.[3] Coupled with the prefix in-, meaning "not" or "without",[4] the word conveys the meaning: "those that lack vertebrae".

Taxonomic significance

The term Invertebrates generates a great deal of confusion among non-biologists; it does not refer to any particular taxon in the same way that for instance Arthropoda, Vertebrata or Manidae do. Each of those examples describes a (presumably monophyletically) valid taxon, say a phylum, subphylum or family. In referring to taxonomy of the Animalia, "invertebrata" is a term of convenience, not a taxon; it has very little circumscriptional significance except arguably within the Chordata. The Vertebrata as a subphylum comprises such a small proportion of the Metazoa that to speak of the kingdom Animalia in terms of "Vertebrata" and "Invertebrata" would be about as practical as classifying animals into mayflies and non-mayflies, or transport into rowing boats and non-rowing boats. It would be logically correct to do so, and rowing boats as such do form a practical group, but speaking of "non-rowing boats" would lump together land, sea, air and space transport in ways that rarely would be useful. In formal taxonomy of the Animalia there are higher level attributes that logically should precede the presence or absence of the vertebral column in constructing a cladogram, for example, the presence of a notochord. That would at least circumscribe the Chordata. However, even the notochord would be a less fundamental criterion than aspects of embryological development and symmetry[5] or perhaps bauplan.[6] The resultant cladistic structure would not resemble anything like a binary split into vertebrates and invertebrates.

At the same time, there certainly is no reason to avoid the use of the terms Invertebrata or invertebrates when they are convenient, but it is important not to confuse the terms with the names or relationships of actual taxa.

Of the million or more animal species in the world, more than 98% are invertebrates. Invertebrates don't have a skeleton of bone, either internal or external. They include hugely varied body plans. Many have fluid-filled, hydrostatic skeletons, like jellyfish or worms. Others have hard exoskeletons, outer shells like those of insects and crustaceans. The most familiar invertebrates include the Protozoa, Annelida, Echinodermata, Mollusca and Arthropoda. Arthropoda include insects, crustaceans and arachnids.

Characteristics

The trait that is common to all invertebrates is the absence of a vertebral column: this creates a distinction between invertebrates and vertebrates. The distinction is one of convenience only; it is not based on any clear biologically homologous trait, any more than the common trait of having wings functionally unites insects, bats, and birds, or than not having wings unites tortoises, snails and sponges. Being animals, invertebrates are heterotrophs, and require sustenance in the form of the consumption of other organisms. With a few exceptions, such as the Porifera, invertebrates generally have bodies composed of differentiated tissues. There is also typically a digestive chamber with one or two openings to the exterior.

Like vertebrates, most invertebrates reproduce at least partly through sexual reproduction. They produce specialized reproductive cells that undergo meiosis to produce smaller, motile spermatozoa or larger, non-motile ova.[7] These fuse to form zygotes, which develop into new individuals.[8] Others are capable of asexual reproduction, or sometimes, both methods of reproduction.

Phyla


The term invertebrates covers several phyla. One of these are the sponges (Porifera). They were long thought to have diverged from other animals early.[9] They lack the complex organization found in most other phyla.[10] Their cells are differentiated, but in most cases not organized into distinct tissues.[11] Sponges typically feed by drawing in water through pores.[12] Some speculate that sponges are not so primitive, but may instead be secondarily simplified.[13] The Ctenophora and the Cnidaria, which includes sea anemones, corals, and jellyfish, are radially symmetric and have digestive chambers with a single opening, which serves as both the mouth and the anus.[14] Both have distinct tissues, but they are not organized into organs.[15] There are only two main germ layers, the ectoderm and endoderm, with only scattered cells between them. As such, they are sometimes called diploblastic.[16]

The Echinodermata are radially symmetric and exclusively marine, including starfish (Asteroidea), sea urchins, (Echinoidea), brittle stars (Ophiuroidea), sea cucumbers (Holothuroidea) and feather stars (Crinoidea).[17]

The largest animal phylum is also included within invertebrates: the Arthropoda, including insects, spiders, crabs, and their kin. All these organisms have a body divided into repeating segments, typically with paired appendages. In addition, they possess a hardened exoskeleton that is periodically shed during growth.[18] Two smaller phyla, the Onychophora and Tardigrada, are close relatives of the arthropods and share these traits. The Nematoda or roundworms, are perhaps the second largest animal phylum, and are also invertebrates. Roundworms are typically microscopic, and occur in nearly every environment where there is water.[19] A number are important parasites.[20] Smaller phyla related to them are the Kinorhyncha, Priapulida, and Loricifera. These groups have a reduced coelom, called a pseudocoelom. Other invertebrates include the Nemertea or ribbon worms, and the Sipuncula.

Another phylum is Platyhelminthes, the flatworms.[21] These were originally considered primitive, but it now appears they developed from more complex ancestors.[22] Flatworms are acoelomates, lacking a body cavity, as are their closest relatives, the microscopic Gastrotricha.[23] The Rotifera or rotifers, are common in aqueous environments. Invertbrates also include the Acanthocephala or spiny-headed worms, the Gnathostomulida, Micrognathozoa, and the Cycliophora.[24]

Also included are two of the most successful animal phyla, the Mollusca and Annelida.[25][26] The former, which is the second-largest animal phylum by number of described species, includes animals such as snails, clams, and squids, and the latter comprises the segmented worms, such as earthworms and leeches. These two groups have long been considered close relatives because of the common presence of trochophore larvae, but the annelids were considered closer to the arthropods because they are both segmented.[27] Now, this is generally considered convergent evolution, owing to many morphological and genetic differences between the two phyla.[28]

Among lesser phyla of invertebrates are the Hemichordata, or acorn worms,[29] and the Chaetognatha, or arrow worms. Other phyla include Acoelomorpha, Brachiopoda, Bryozoa, Entoprocta, Phoronida, and Xenoturbellida.

Classification of Invertebrates

Invertebrates can be classified in 9 main categories, some of which are taxonomically obsolescent. All however are described in their own respective articles at the following links.

History

Some of the first animal fossils appear to be those of invertebrates. 665-million-year-old fossils in the Trezona Formation at Trezona Bore, West Central Flinders, South Australia have been interpreted as being early sponges.[30] Some paleontologists suggest that animals appeared much earlier, possibly as early as 1 billion years ago.[31] Trace fossils such as tracks and burrows found in the Tonian era indicate the presence of triploblastic worms, like metazoans, roughly as large (about 5 mm wide) and complex as earthworms.[32]

Around 453 MYA, animals began diversifying, and many of the important groups of invertebrates diverged from one another. Fossils of invertebrates are found in various types of sediment from the Phanerozoic.[33] Fossils of invertebrates are commonly used in stratigraphy.[34]

Classification

Carl Linnaeus divided these animals into only two groups, the Insecta and the now-obsolete Vermes (worms). Jean-Baptiste Lamarck, who was appointed to the position of "Curator of Insecta and Vermes" at the Muséum National d'Histoire Naturelle in 1793, both coined the term "invertebrate" to describe such animals, and divided the original two groups into ten, by splitting Arachnida and Crustacea from the Linnean Insecta, and Mollusca, Annelida, Cirripedia, Radiata, Coelenterata and Infusoria from the Linnean Vermes. They are now classified into over 30 phyla, from simple organisms such as sea sponges and flatworms to complex animals such as arthropods and molluscs.

Significance of the group

Invertebrates are animals without a vertebral column. This has led to the conclusion that invertebrates are a group that deviates from the norm, vertebrates. This has been said to be due to the fact that researchers in the past, such as Lamarck, viewed vertebrates as a "standard": in Lamarck's theory of evolution, he believed that characteristics acquired through the evolutionary process involved not only survival, but also progression toward a "higher form", to which humans and vertebrates were closer than invertebrates were. Although goal-directed evolution has been abandoned, the distinction of invertebrates and vertebrates persists to this day, even though the grouping has been noted to be "hardly natural or even very sharp." Another reason cited for this continued distinction is that Lamarck created a precedent through his classifications which is now difficult to escape from. It's also possible that some humans believe that, they themselves being vertebrates, the group deserves more attention than invertebrates.[35] In any event, in the 1968 edition of Invertebrate Zoology, it is noted that "division of the Animal Kingdom into vertebrates and invertebrates is artificial and reflects human bias in favor of man's own relatives." The book also points out that the group lumps a vast number of species together, so that no one characteristic describes all invertebrates. In addition, some species included are only remotely related to one another, with some more related to vertebrates than other invertebrates.[36]

In research

Two of the most commonly studied model organisms are invertebrates: the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. They have long been the most intensively studied model organisms, and were among the first life-forms to be genetically sequenced. This was facilitated by the severely reduced state of their genomes, but many genes, introns, and linkages have been lost. Analysis of the starlet sea anemone genome has emphasised the importance of sponges, placozoans, and choanoflagellates, also being sequenced, in explaining the arrival of 1500 ancestral genes unique to animals.[37]

Arthropods, especially insects, are often used by forensic scientists. For example, some invertebrates are attracted to dead bodies.[18]

See also

References

Further reading

  • Hyman, L. H. 1940. The Invertebrates (6 volumes) New York : McGraw-Hill. A classic work.
  • Anderson, D. T. (Ed.). (2001). Invertebrate zoology (2nd ed.). Oxford: Oxford University Press.
  • Brusca, R. C., & Brusca, G. J. (2003). Invertebrates (2nd ed.). Sunderland, Mass. : Sinauer Associates.
  • Miller, S.A., & Harley, J.P. (1996). Zoology (4th ed.). Boston: WCB/McGraw-Hill.
  • Ruppert, E. E., Fox, R. S., & Barnes, R. D. (2004). Invertebrate zoology: a functional evolutionary approach. Belmont, CA: Thomas-Brooks/Cole.

External links

  • Support for endangered invertebrates
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.