World Library  
Flag as Inappropriate
Email this Article

Forward chaining

Article Id: WHEBN0000568962
Reproduction Date:

Title: Forward chaining  
Author: World Heritage Encyclopedia
Language: English
Subject: Planner (programming language), Cwm (software), OpenKBM, Opportunistic reasoning, Computer-aided maintenance
Collection: Expert Systems, Logic, Logic in Computer Science
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Forward chaining

Forward chaining is one of the two main methods of reasoning when using an inference engine and can be described logically as repeated application of modus ponens. Forward chaining is a popular implementation strategy for expert systems, business and production rule systems. The opposite of forward chaining is backward chaining.

Forward chaining starts with the available data and uses inference rules to extract more data (from an end user, for example) until a goal is reached. An inference engine using forward chaining searches the inference rules until it finds one where the antecedent (If clause) is known to be true. When such a rule is found, the engine can conclude, or infer, the consequent (Then clause), resulting in the addition of new information to its data.[1]

Inference engines will iterate through this process until a goal is reached.

For example, suppose that the goal is to conclude the color of a pet named Fritz, given that he croaks and eats flies, and that the rule base contains the following four rules:

  1. If X croaks and X eats flies - Then X is a frog
  2. If X chirps and X sings - Then X is a canary
  3. If X is a frog - Then X is green
  4. If X is a canary - Then X is yellow

Let us illustrate forward chaining by following the pattern of a computer as it evaluates the rules. Assume the following facts:

  • Fritz croaks
  • Fritz eats flies

With forward reasoning, the inference engine can derive that Fritz is green in a series of steps:

1. Since the base facts indicate that "Fritz croaks" and "Fritz eats flies", the antecedent of rule #1 is satisfied by substituting Fritz for X, and the inference engine concludes:

 Fritz is a frog

2. The antecedent of rule #3 is then satisfied by substituting Fritz for X, and the inference engine concludes:

 Fritz is green

The name "forward chaining" comes from the fact that the inference engine starts with the data and reasons its way to the answer, as opposed to backward chaining, which works the other way around. In the derivation, the rules are used in the opposite order as compared to backward chaining. In this example, rules #2 and #4 were not used in determining that Fritz is green.

Because the data determines which rules are selected and used, this method is called data-driven, in contrast to goal-driven backward chaining inference. The forward chaining approach is often employed by expert systems, such as CLIPS.

One of the advantages of forward-chaining over backward-chaining is that the reception of new data can trigger new inferences, which makes the engine better suited to dynamic situations in which conditions are likely to change.[2][3]

See also

References

  1. ^
  2. ^
  3. ^

External links

  • Forward vs. Backward Chaining Explained at SemanticWeb.com
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.