#jsDisabledContent { display:none; } My Account |  Register |  Help

# Feti-dp

Article Id: WHEBN0016230368
Reproduction Date:

 Title: Feti-dp Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Feti-dp

The FETI-DP method is a domain decomposition method [1] that enforces equality of the solution at subdomain interfaces by Lagrange multipliers except at subdomain corners, which remain primal variables.The first mathematical analysis of the method was provided by Mandel and Tezaur.[2] The method was further improved by enforcing the equality of averages across the edges or faces on subdomain interfaces[3][4] which is important for parallel scalability for 3D problems. FETI-DP is a simplification and a better performing version of FETI. The eigenvalues of FETI-DP are same as those of BDDC, except for the eigenvalue equal to one, and so the performance of FETI-DP and BDDC is essentially same.[5]

FETI-DP methods are very suitable for high performance parallel computing. A structural simulation using a FETI-DP algorithm and running on 3783 processors of the ASCI White supercomputer was awarded a Gordon Bell price in 2002.[6] A recent FETI-DP method has scaled to more than 65000 processor cores of the JUGENE supercomputer solving a model problem.[7]

## References

1. ^ C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen, FETI-DP: a dual-primal unified FETI method. I. A faster alternative to the two-level FETI method, Internat. J. Numer. Methods Engrg., 50 (2001), pp. 1523--1544.
2. ^ J. Mandel and R. Tezaur, On the convergence of a dual-primal substructuring method, Numerische Mathematik, 88 (2001), pp. 543--558.
3. ^ C. Farhat, M. Lesoinne, and K. Pierson, A scalable dual-primal domain decomposition method, Numer. Linear Algebra Appl., 7 (2000), pp. 687--714. Preconditioning techniques for large sparse matrix problems in industrial applications (Minneapolis, MN, 1999).
4. ^ A. Klawonn, O. B. Widlund, and M. Dryja, Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients, SIAM J. Numer. Anal., 40 (2002), pp. 159--179.
5. ^ J. Mandel, C. R. Dohrmann, and R. Tezaur, An algebraic theory for primal and dual substructuring methods by constraints, Appl. Numer. Math., 54 (2005), pp. 167--193.
6. ^ Manoj Bhardwaj, Kendall H. Pierson, Garth Reese, Tim Walsh, David Day, Ken Alvin, James Peery, Charbel Farhat, and Michel Lesoinne. Salinas: A scalable software for high performance structural and mechanics simulation. In ACM/IEEE Proceedings of SC02: High Performance Networking and Computing. Gordon Bell Award, pages 1–19, 2002.
7. ^ .

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.

Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.