World Library  
Flag as Inappropriate
Email this Article

Exact differential

Article Id: WHEBN0000405737
Reproduction Date:

Title: Exact differential  
Author: World Heritage Encyclopedia
Language: English
Subject: Triple product rule, Principle of minimum energy, Stream function, Multivariable calculus, Exact differential equation
Collection: Multivariable Calculus, Thermodynamics
Publisher: World Heritage Encyclopedia

Exact differential

In multivariate calculus, a differential is said to be exact (or perfect), as contrasted with an inexact differential, if it is of the form dQ, for some differentiable function Q.


  • Overview 1
    • Definition 1.1
    • One dimension 1.2
    • Two and three dimensions 1.3
  • Partial differential relations 2
    • Reciprocity relation 2.1
    • Cyclic relation 2.2
  • Some useful equations derived from exact differentials in two dimensions 3
  • See also 4
  • References 5
  • External links 6



We work in three dimensions, with similar definitions holding in any other number of dimensions. In three dimensions, a form of the type

A(x,y,z) dx + B(x,y,z) dy + C(x,y,z) dz

is called a differential form. This form is called exact on a domain D \subset \mathbb{R}^3 in space if there exists some scalar function Q = Q(x,y,z) defined on D such that

\; dQ \; \equiv \; \left ( \frac{\partial Q}{\partial x} \right )_{y,z} dx \quad + \quad \left ( \frac{\partial Q}{\partial y} \right )_{z,x} dy \quad + \quad \left ( \frac{\partial Q}{\partial z} \right )_{x,y} dz,   dQ = A dx + B dy + C dz

throughout D. This is equivalent to saying that the vector field (A, B, C) is a conservative vector field, with corresponding potential Q.

Note: The subscripts outside the parenthesis indicate which variables are being held constant during differentiation. Due to the definition of the partial derivative, these subscripts are not required, but they are included as a reminder.

One dimension

In one dimension, a differential form

A(x) \, dx

is exact as long as A has an antiderivative; in this case let Q be the antiderivative of A. Otherwise, if A does not have an antiderivative, we cannot write dQ = A(x) \, dx and so the differential form is inexact.

Two and three dimensions

By symmetry of second derivatives, for any "nice" (non-pathological) function Q we have

\frac{\partial ^2 Q}{\partial x \partial y} = \frac{\partial ^2 Q}{\partial y \partial x}

Hence, it follows that in a simply-connected region R of the xy-plane, a differential

A(x, y)\,dx + B(x, y)\,dy

is an exact differential if and only if the following holds:

\left( \frac{\partial A}{\partial y} \right)_x = \left( \frac{\partial B}{\partial x} \right)_y

For three dimensions, a differential

dQ = A(x, y, z) \, dx + B(x, y, z) \, dy + C(x, y, z) \, dz

is an exact differential in a simply-connected region R of the xyz-coordinate system if between the functions A, B and C there exist the relations:

\left( \frac{\partial A}{\partial y} \right)_{x,z} \!\!\!= \left( \frac{\partial B}{\partial x} \right)_{y,z}   ;   \left( \frac{\partial A}{\partial z} \right)_{x,y} \!\!\!= \left( \frac{\partial C}{\partial x} \right)_{y,z}   ;   \left( \frac{\partial B}{\partial z} \right)_{x,y} \!\!\!= \left( \frac{\partial C}{\partial y} \right)_{x,z}

These conditions are equivalent to the following one: If G is the graph of this vector valued function then for all tangent vectors X,Y of the surface G then s(XY) = 0 with s the symplectic form.

These conditions, which are easy to generalize, arise from the independence of the order of differentiations in the calculation of the second derivatives. So, in order for a differential dQ, that is a function of four variables to be an exact differential, there are six conditions to satisfy.

In summary, when a differential dQ is exact:

  • the function Q exists;
  • \int_i^f dQ=Q(f)-Q(i), independent of the path followed.

In thermodynamics, when dQ is exact, the function Q is a state function of the system. The thermodynamic functions U, S, H, A and G are state functions. Generally, neither work nor heat is a state function. An exact differential is sometimes also called a 'total differential', or a 'full differential', or, in the study of differential geometry, it is termed an exact form.

Partial differential relations

If three variables, x, y and z are bound by the condition F(x,y,z) = \text{constant} for some differentiable function F(x,y,z), then the following total differentials exist[1]:667&669

d x = {\left ( \frac{\partial x}{\partial y} \right )}_z \, d y + {\left ( \frac{\partial x}{\partial z} \right )}_y \,dz
d z = {\left ( \frac{\partial z}{\partial x} \right )}_y \, d x + {\left ( \frac{\partial z}{\partial y} \right )}_x \,dy.

Substituting the first equation into the second and rearranging, we obtain[1]:669

d z = {\left ( \frac{\partial z}{\partial x} \right )}_y \left [ {\left ( \frac{\partial x}{\partial y} \right )}_z d y + {\left ( \frac{\partial x}{\partial z} \right )}_y dz \right ] + {\left ( \frac{\partial z}{\partial y} \right )}_x dy,
d z = \left [ {\left ( \frac{\partial z}{\partial x} \right )}_y {\left ( \frac{\partial x}{\partial y} \right )}_z + {\left ( \frac{\partial z}{\partial y} \right )}_x \right ] d y + {\left ( \frac{\partial z}{\partial x} \right )}_y {\left ( \frac{\partial x}{\partial z} \right )}_y dz,
\left [ 1 - {\left ( \frac{\partial z}{\partial x} \right )}_y {\left ( \frac{\partial x}{\partial z} \right )}_y \right ] dz = \left [ {\left ( \frac{\partial z}{\partial x} \right )}_y {\left ( \frac{\partial x}{\partial y} \right )}_z + {\left ( \frac{\partial z}{\partial y} \right )}_x \right ] d y.

Since y and z are independent variables, d y and d z may be chosen without restriction. For this last equation to hold in general, the bracketed terms must be equal to zero.[1]:669

Reciprocity relation

Setting the first term in brackets equal to zero yields[1]:60฿฿฿70

{\left ( \frac{\partial z}{\partial x} \right )}_y {\left ( \frac{\partial x}{\partial z} \right )}_y = 1.

A slight rearrangement gives a reciprocity relation,[1]:670

{\left ( \frac{\partial z}{\partial x} \right )}_y = \frac{1}{{\left ( \frac{\partial x}{\partial z} \right )}_y}.

There are two more permutations of the foregoing derivation that give a total of three reciprocity relations between x, y and z. Reciprocity relations show that the inverse of a partial derivative is equal to its reciprocal.

Cyclic relation

The cyclic relation is also known as the cyclic rule or the Triple product rule. Setting the second term in brackets equal to zero yields[1]:670

{\left ( \frac{\partial z}{\partial x} \right )}_y {\left ( \frac{\partial x}{\partial y} \right )}_z = - {\left ( \frac{\partial z}{\partial y} \right )}_x.

Using a reciprocity relation for \tfrac{\partial z}{\partial y} on this equation and reordering gives a cyclic relation (the triple product rule),[1]:670

{\left ( \frac{\partial x}{\partial y} \right )}_z {\left ( \frac{\partial y}{\partial z} \right )}_x {\left ( \frac{\partial z}{\partial x} \right )}_y = -1.

If, instead, a reciprocity relation for \tfrac{\partial x}{\partial y} is used with subsequent rearrangement, a standard form for implicit differentiation is obtained:

{\left ( \frac{\partial y}{\partial x} \right )}_z = - \frac { {\left ( \frac{\partial z}{\partial x} \right )}_y }{ {\left ( \frac{\partial z}{\partial y} \right )}_x }.

Some useful equations derived from exact differentials in two dimensions

(See also Bridgman's thermodynamic equations for the use of exact differentials in the theory of thermodynamic equations)

Suppose we have five state functions z,x,y,u, and v. Suppose that the state space is two dimensional and any of the five quantities are exact differentials. Then by the chain rule

(1)~~~~~ dz = \left(\frac{\partial z}{\partial x}\right)_y dx+ \left(\frac{\partial z}{\partial y}\right)_x dy = \left(\frac{\partial z}{\partial u}\right)_v du +\left(\frac{\partial z}{\partial v}\right)_u dv

but also by the chain rule:

(2)~~~~~ dx = \left(\frac{\partial x}{\partial u}\right)_v du +\left(\frac{\partial x}{\partial v}\right)_u dv


(3)~~~~~ dy= \left(\frac{\partial y}{\partial u}\right)_v du +\left(\frac{\partial y}{\partial v}\right)_u dv

so that:

(4)~~~~~ dz = \left[ \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial u}\right)_v + \left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial y}{\partial u}\right)_v \right]du

+ \left[ \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial v}\right)_u + \left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial y}{\partial v}\right)_u \right]dv

which implies that:

(5)~~~~~ \left(\frac{\partial z}{\partial u}\right)_v = \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial u}\right)_v + \left(\frac{\partial z}{\partial y}\right)_x \left(\frac{\partial y}{\partial u}\right)_v

Letting v=y gives:

(6)~~~~~ \left(\frac{\partial z}{\partial u}\right)_y = \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial u}\right)_y

Letting u=y gives:

(7)~~~~~ \left(\frac{\partial z}{\partial y}\right)_v = \left(\frac{\partial z}{\partial y}\right)_x + \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_v

Letting u=y, v=z gives:

(8)~~~~~ \left(\frac{\partial z}{\partial y}\right)_x = - \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_z

using (\partial a/\partial b)_c = 1/(\partial b/\partial a)_c gives the triple product rule:

(9)~~~~~ \left(\frac{\partial z}{\partial x}\right)_y \left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x =-1

See also


  1. ^ a b c d e f g Çengel, Yunus A.; Boles, Michael A. (1998) [1989]. "Thermodynamics Property Relations". Thermodynamics - An Engineering Approach. McGraw-Hill Series in  
  • Perrot, P. (1998). A to Z of Thermodynamics. New York: Oxford University Press.
  • Zill, D. (1993). A First Course in Differential Equations, 5th Ed. Boston: PWS-Kent Publishing Company.

External links

  • Inexact Differential – from Wolfram MathWorld
  • Exact and Inexact Differentials – University of Arizona
  • Exact and Inexact Differentials – University of Texas
  • Exact Differential – from Wolfram MathWorld
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.