World Library  
Flag as Inappropriate
Email this Article

Data architecture

Article Id: WHEBN0004071997
Reproduction Date:

Title: Data architecture  
Author: World Heritage Encyclopedia
Language: English
Subject: Architecture domain, Data management, Data model, Enterprise Data Planning, Data definition specification
Publisher: World Heritage Encyclopedia

Data architecture

In [1] Data is usually one of several architecture domains that form the pillars of an enterprise architecture or solution architecture.[2]


A data architecture should set data standards for all its data systems as a vision or a model of the eventual interactions between those data systems. Data integration, for example, should be dependent upon data architecture standards since data integration requires data interactions between two or more data systems. A data architecture, in part, describes the data structures used by a business and its computer applications software. Data architectures address data in storage and data in motion; descriptions of data stores, data groups and data items; and mappings of those data artifacts to data qualities, applications, locations etc.

Essential to realizing the target state, Data Architecture describes how data is processed, stored, and utilized in an information system. It provides criteria for data processing operations so as to make it possible to design data flows and also control the flow of data in the system.

The Data Architect is typically responsible for defining the target state, aligning during development and then following up to ensure enhancements are done in the spirit of the original blueprint.

During the definition of the target state, the Data Architecture breaks a subject down to the atomic level and then builds it back up to the desired form. The Data Architect breaks the subject down by going through 3 traditional architectural processes:

  • Conceptual - represents all business entities.
  • Logical - represents the logic of how entities are related.
  • Physical - the realization of the data mechanisms for a specific type of functionality.

The "data" column of the Zachman Framework for enterprise architecture –

Layer View Data (What) Stakeholder
1 Scope/Contextual List of things and architectural standards[3] important to the business Planner
2 Business Model/Conceptual Semantic model or Conceptual/Enterprise Data Model Owner
3 System Model/Logical Enterprise/Logical Data Model Designer
4 Technology Model/Physical Physical Data Model Builder
5 Detailed Representations Actual databases Subcontractor

In this second, broader sense, data architecture includes a complete analysis of the relationships between an organization's functions, available technologies, and data types.

Data architecture should be defined in the planning phase of the design of a new data processing and storage system. The major types and sources of data necessary to support an enterprise should be identified in a manner that is complete, consistent, and understandable. The primary requirement at this stage is to define all of the relevant data entities, not to specify computer hardware items. A data entity is any real or abstracted thing about which an organization or individual wishes to store data.

Physical data architecture

Physical data architecture of an information system is part of a technology plan. As its name implies, the technology plan is focused on the actual tangible elements to be used in the implementation of the data architecture design. Physical data architecture encompasses database architecture. Database architecture is a schema of the actual database technology that will support the designed data architecture.

Elements of data architecture

There are certain elements that must be defined as the data architecture schema of an organization is designed. For example, the administrative structure that will be established in order to manage the data resources must be described. Also, the methodologies that will be employed to store the data must be defined. In addition, a description of the database technology to be employed must be generated, as well as a description of the processes that will manipulate the data. It is also important to design interfaces to the data by other systems, as well as a design for the infrastructure that will support common data operations (i.e. emergency procedures, data imports, data backups, external transfers of data).

Without the guidance of a properly implemented data architecture design, common data operations might be implemented in different ways, rendering it difficult to understand and control the flow of data within such systems. This sort of fragmentation is highly undesirable due to the potential increased cost, and the data disconnects involved. These sorts of difficulties may be encountered with rapidly growing enterprises and also enterprises that service different lines of business (e.g. insurance products).

Properly executed, the data architecture phase of information system planning forces an organization to precisely specify and describe both internal and external information flows. These are patterns that the organization may not have previously taken the time to conceptualize. It is therefore possible at this stage to identify costly information shortfalls, disconnects between departments, and disconnects between organizational systems that may not have been evident before the data architecture analysis.[4]

Constraints and influences

Various constraints and influences will have an effect on data architecture design. These include enterprise requirements, technology drivers, economics, business policies and data processing needs.

Enterprise requirements
These will generally include such elements as economical and effective system expansion, acceptable performance levels (especially system access speed), transaction data and (master) reference data. Another one is splitting data capture systems from data retrieval systems (as done in a data warehouse).
Technology drivers
These are usually suggested by the completed data architecture and database architecture designs. In addition, some technology drivers will derive from existing organizational integration frameworks and standards, organizational economics, and existing site resources (e.g. previously purchased software licensing).
These are also important factors that must be considered during the data architecture phase. It is possible that some solutions, while optimal in principle, may not be potential candidates due to their cost. External factors such as the business cycle, interest rates, market conditions, and legal considerations could all have an effect on decisions relevant to data architecture.
Business policies
Business policies that also drive data architecture design include internal organizational policies, rules of regulatory bodies, professional standards, and applicable governmental laws that can vary by applicable agency. These policies and rules will help describe the manner in which enterprise wishes to process their data.
Data processing needs
These include accurate and reproducible transactions performed in high volumes, data warehousing for the support of management information systems (and potential data product development).

See also


  1. ^ Business Dictionary - Data Architecture
  2. ^ What is data architecture GeekInterview, 2008-01-28, accessed 2011-04-28
  3. ^ Data Architecture Standards
  4. ^ Mittal, Prashant (2009). Author. pg 256: Global India Publications. p. 314.  

Further reading

  • Bass, L.; John, B.; & Kates, J. (2001). Achieving Usability Through Software Architecture, Carnegie Mellon University.
  • Lewis, G.; Comella-Dorda, S.; Place, P.; Plakosh, D.; & Seacord, R., (2001). Enterprise Information System Data Architecture Guide Carnegie Mellon University.
  • Adleman, S.; Moss, L.; Abai, M. (2005). Data Strategy Addison-Wesley Professional.

External links

  • Achieving Usability Through Software Architecture, 2001
  • The Logical Data Architecture, by Nirmal Baid
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.