World Library  
Flag as Inappropriate
Email this Article

D'Hondt method

The D'Hondt method[1] (mathematically but not operationally equivalent to Jefferson's method) is a highest averages method for allocating seats in party-list proportional representation. The method described is named after Belgian mathematician Victor D'Hondt, who described it in 1878. There are two forms: closed list (a party selects the order of election of their candidates) and an open list (voters' choices determine the order).

Proportional representation systems aim to allocate seats to parties in proportion to the number of votes received. For example, if a party wins one-third of the votes then it should gain one-third of the seats. In general, exact proportionality is not possible because the divisions produce fractional numbers of seats. As a result, several methods, of which the D'Hondt method is one, have been devised which guarantee that the parties' seat allocations are whole numbers that sum to the correct total, while aiming to preserve proportionality as far as is possible.[1] In comparison with the Sainte-Laguë method, D'Hondt slightly favours large parties and coalitions over scattered small parties.[2]

Legislatures using this system include those of Albania, Argentina, Austria, Belgium, Brazil, Bulgaria, Cambodia, Cape Verde, Chile, Colombia, Croatia, Czech Republic, Denmark, East Timor, Ecuador, Estonia, Finland, Guatemala, Hungary, Iceland, Israel, Japan, Luxembourg, Macedonia, Moldova, Montenegro, the Netherlands, Paraguay, Peru, Poland, Portugal, Romania, Scotland, Serbia, Slovenia, Spain, Turkey, Uruguay and Wales.

The system has also been used for the 'top-up' seats in the London Assembly; in some countries during elections to the European Parliament; and during the 1997 Constitution-era for allocating party-list parliamentary seats in Thailand.[3] A modified form was used for elections in the Australian Capital Territory Legislative Assembly but abandoned in favour of the Hare-Clark system. The system is also used in practice for the allocation between political groups of a large number of posts (Vice Presidents, committee chairmen and vice-chairmen, delegation chairmen and vice-chairmen) in the European Parliament and for the allocation of ministers in the Northern Ireland Assembly.[4]


  • Allocation 1
    • Example 1.1
  • D'Hondt and Jefferson 2
  • Variations 3
  • Notes 4
  • References 5
  • External links 6


After all the votes have been tallied, successive quotients are calculated for each party. The formula for the quotient is[5]

quot = \frac{V}{s+1}


  • V is the total number of votes that party received, and
  • s is the number of seats that party has been allocated so far, initially 0 for all parties.

The total votes cast for each party in the electoral district is divided, first by 1, then by 2, then 3, right up to the total number of seats to be allocated for the district/constituency. Say there are p parties and s seats. Then create a grid of numbers, with p rows and s columns, where the entry in the ith row and jth column is the number of votes won by the ith party, divided by j. The s winning entries are the s highest numbers in the whole grid; each party is given as many seats as there are winning entries in its row.


In this example, 230,000 voters decide the disposition of 8 seats among 4 parties. Since 8 seats are to be allocated, divide each party's total votes by 1, then by 2, 3, 4, 5, 6, 7, and 8. The 8 highest entries, marked with asterisks, range from 100,000 down to 25,000. For each, the corresponding party gets a seat.

For comparison, the "True proportion" column shows the fractional numbers of seats due, calculated in proportion to the number of votes received. (For example, 100,000/230,000 × 8 = 3.48) The slight favouring of the largest party over the smallest is apparent.

denominator /1 /2 /3 /4 /5 /6 /7 /8 Seats won (*) True proportion
Party A 100,000* 50,000* 33,333* 25,000* 20,000 16,666 14,286 12,500 4 3.48
Party B 80,000* 40,000* 26,666* 20,000 16,000 13,333 11,428 10,000 3 2.78
Party C 30,000* 15,000 10,000 7,500 6,000 5,000 4,286 3,750 1 1.04
Party D 20,000 10,000 6,666 5,000 4,000 3,333 2,857 2,500 0 0.70

D'Hondt and Jefferson

The D'Hondt method is equivalent to the Jefferson method (named after the U.S. statesman Thomas Jefferson). They always give the same results, but the methods of presenting the calculation are different. Jefferson devised the method in 1792 for the U.S. congressional apportionment pursuant to the First United States Census; it was used to achieve the proportional distribution of seats in the House of Representatives among the states, rather than distributing seats in a legislature among parties pursuant to an election; but the tasks are mathematically equivalent, putting states in the place of parties and population in place of votes.

Jefferson's method uses a quota (called a divisor), as in the largest remainder method. The divisor is chosen as necessary so that the resulting quotients, disregarding any fractional remainders, sum to the required total; in other words, so that there is no need to examine the remainders. One of a range of quotas will accomplish this. Applied to the above example of party lists, this extends as integers from 20,001 to 25,000, the highest number always being the same as the last average to which the D'Hondt method awards a seat if it is used rather than the Jefferson method, and the lowest number being the next average plus one.


In some cases, a threshold or barrage is set, and any list which does not receive that threshold will not have any seats allocated to it, even if it received enough votes to have otherwise been rewarded with a seat. Examples of countries using the D'Hondt method with a threshold are Denmark and Israel (2%); East Timor, Spain, and Montenegro (3%); Slovenia (4%); Czech Republic, Croatia, Romania, and Serbia (5%); Russia (7%); Turkey (10%); Poland (5%, or 8% for coalitions; but does not apply for ethnic-minority parties), Hungary (5% for single party, 10% for two party coalition, 15% for 3 party coalition or more) and Belgium (5%, on regional basis). In the Netherlands, a party must win enough votes for one full seat (note that this is not necessary in plain d'Hondt), which with 150 seats in the lower chamber gives an effective threshold of 0.67%. In Estonia, candidates receiving the simple quota in their electoral districts are considered elected, but in the second (district level) and third round of counting (nationwide, modified d'Hondt method) mandates are awarded only to candidate lists receiving more than the threshold of 5% of the votes nationally.

The method can cause a hidden threshold. It depends on the number of seats that are allocated with the D'Hondt method. In Finland's parliamentary elections, there is no official threshold, but the effective threshold is gaining one seat. The country is divided into districts with different numbers of representatives, so there is a hidden threshold, different in each district. The largest district, Uusimaa with 33 representatives, has a hidden threshold of 3%, while the smallest district, South Savo with 6 representatives, has a hidden threshold of 14%.[6] This favors large parties in the small districts. In Croatia, the official threshold is 5% for parties and coalitions. However, since the country is divided into 10 voting districts with 14 elected representatives each, sometimes the threshold can be higher, depending on the number of votes of "fallen lists" (lists that don't get at least 5%). If many votes are lost in this manner, a list that gets 5% will still get a seat, whereas if there is a small number votes for parties that don't pass the threshold, the actual ("natural") threshold is close to 7.15%. One fourteenth of the votes (7.15%) guarantees at least one representative. But the "actual" threshold depends on how many votes "larger" parties got. If the total of votes won by parties who got the seats is less than 70%, then the effective threshold is 5%. But if the total number of votes is more than 70%, then the threshold is higher (1/14 of percentage won by elected parties), approaching the theoretical 7.15%.

Some systems allow parties to associate their lists together into a single cartel in order to overcome the threshold, while some systems set a separate threshold for cartels. Smaller parties often form pre-election coalitions to make sure they get past the election threshold. In the Netherlands, cartels (lijstverbindingen) cannot be used to overcome the threshold, but they do influence the distribution of remainder seats; thus, smaller parties can use them to get a chance which is more like that of the big parties.

In French municipal and regional elections, the d'Hondt method is used to attribute a number of council seats; however, a fixed proportion of them (50% for municipal elections, 25% for regional elections) is automatically given to the list with the greatest number of votes, to ensure that it has a working majority: this is called the "majority bonus" (prime à la majorité), and only the remainder of the seats is distributed proportionally (including to the list which has already received the majority bonus).

The d'Hondt method can also be used in conjunction with a quota formula to allocate most seats, applying the d'Hondt method to allocate any remaining seats to get a result identical to that achieved by the standard d'Hondt formula. This variation is known as the Hagenbach-Bischoff System, and is the formula frequently used when a country's electoral system is referred to simply as 'd'Hondt'.

In the election of Legislative Assembly of Macau, a modified d'Hondt method is used. The formula for the quotient in this system is \textstyle\frac{V}{2^{s}}. The term "modified d'Hondt" has also been given to the use of the d'Hondt method in the additional member system used for the Scottish Parliament, National Assembly for Wales, and London Assembly, in which after constituency seats have been allocated to parties by first-past-the-post, d'Hondt is applied for the allocation of list seats taking into account for each party the number of constituency seats it has won.


  1. ^ The name D'Hondt is sometimes spelt as "d'Hondt". For example it is customary in the Netherlands to write such surnames with a lower-case "d" when preceded by the forename: thus Victor d'Hondt (with a small d), while the surname all by itself would be D'Hondt (with a capital D). However, in Belgium it is always capitalized, hence: Victor D'Hondt.


  1. ^ Proportionality, Disproportionality and Electoral Systems, Michael Gallagher, Trinity College, Dublin
  2. ^ Pukelsheim, Friedrich (2007). "4th ecpr General Conference". 
  3. ^ Aurel Croissant and Daniel J. Pojar, Jr., Quo Vadis Thailand? Thai Politics after the 2005 Parliamentary Election, Strategic Insights, Volume IV, Issue 6 (June 2005)
  4. ^ "D'Hondt system for picking NI ministers in Stormont". BBC. 11 May 2011. Retrieved 7 July 2013. 
  5. ^  . See in particular the section "Sainte-Lague", pp. 174–175.
  6. ^ Oikeusministeriö. Suhteellisuuden parantaminen eduskuntavaaleissa.

External links

  • Simulator Election calculus simulator based on the modified D'Hondt system
  • Calculations using the pure d'Hondt method
  • PHP Implementation of D'Hont system
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.