World Library  
Flag as Inappropriate
Email this Article

Compound engine

Article Id: WHEBN0037861021
Reproduction Date:

Title: Compound engine  
Author: World Heritage Encyclopedia
Language: English
Subject: John Elder (shipbuilder), Compound locomotive, W & J Galloway & Sons, Simple, SMS Lussin
Collection: Engine Technology
Publisher: World Heritage Encyclopedia

Compound engine

Bavarian S 3/6 compound locomotive, showing the two high pressure cylinders mounted centrally in the frame and the two slightly larger low pressure cylinders on either side

A compound engine is an engine that has more than one stage for recovering energy from the same working fluid, with the exhaust from the first stage passing through the second stage, and in some cases then on to another subsequent stage or even stages. Originally invented as a means of making steam engines more efficient, the compounding of engines by use of several stages has also been used on internal combustion engines and continues to have niche markets there.

The stages of a compound engine may be either of differing or of similar technologies, for example:

  • In a turbo-compound engine the exhaust gas from the cylinders passes through a turbine, the two stages being dissimilar.
  • In a compound steam locomotive the steam passes from the high pressure cylinder or cylinders to the low pressure cylinder or cylinders, the two stages being similar.
  • In a triple expansion steam engine the steam passes through three successive cylinders of increasing size and decreasing pressure. Such engines were the most common marine engines in the golden age of steam.

These examples and compound turbines are the main but not the only uses of compounding in engines, see below.


  • Terminology 1
  • History 2
  • Examples 3
  • See also 4
    • Theory 4.1
    • Inventors and designers 4.2
    • Similar technology 4.3
  • References 5


A compound engine uses several stages to produce its output.

Not all engines that use multiple stages are called compound engines. In particular, if an engine uses a later stage purely to extract energy from the exhaust for some other purpose, and notably for turbo charging, is not called a compound engine. Similarly, proposed engines that use a free piston engine to drive a turbine would not be called compound engines, as only the second stage produces output power.

However if a turbo compound engine is also supercharged by feeding some of the shaft power back to the supercharger, as in some aircraft engines, it is still a compound engine. Usage of the terms supercharged and turbosupercharged has varied with time, for example the makers of the Wright R-3350 Duplex-Cyclone compound engine described it at the time as turbosupercharged. It is however a compound engine, and a similar engine produced today would be described as supercharged rather than turbocharged.

The term compounding is a little less restrictive than compound engine. Large compound turbines are an application of compounding, as are the multiple rows of blades used in many gas turbines, but neither is normally referred to as a compound engine. The several sets of blades in a single turbine are perhaps better thought of as similar in principle to the uniflow steam engine than to compounding. Unlike the uniflow steam engine, which has found niche uses only, multiple row turbines have found enormous practical application.

An engine that does not use compounding is referred to as a simple engine, particularly in the case of a steam locomotive, or more precisely as a simple expansion engine, particularly in the case of a marine steam engine.

Note however that in the case of any steam engine, simple engine can also be used to mean one that does not use a condenser to generate negative pressure and so improve efficiency. Use of separate condensers for this purpose is one of the key features that distinguishes the Watt steam engine of 1765 from the Newcomen steam engine of 1712.

No ambiguity arises in the case of a steam locomotive, as in a condensing steam locomotive the condenser is not there to increase efficiency, and may even reduce efficiency in order to conserve water and reduce emissions. So for example the Metropolitan Railway A Class is in every sense a simple locomotive despite its condensers, and the term simple engine applied to steam locomotives always in practice means one that does not use compounding, again irrespective of its use of condensers. The terms simple expansion locomotive and simple expansion engine are sometimes applied to locomotives to remove any possible confusion.


Woolf compound beam engine, 1858, with the light-coloured high and low pressure cylinders clearly visible

The oldest examples of compound engines are compound steam engines. In 1805 Arthur Woolf patented the Woolf high pressure compound engine which used this principle.

Compounding was particular used on stationary steam engines, marine steam engines, and on some but by no means all steam locomotives starting from the 1850s, particularly but not only in continental Europe.[1]

Three stage or triple expansion reciprocating steam engines, with three cylinders of increasing bore in line, were particularly popular for steamship propulsion. "Doctor" Alexander Carnegie Kirk, experimentally fitted his first triple expansion engine to a ship called Propontis in 1874. In 1881, Kirk installed a refined version of his engine in SS Aberdeen on Clydeside, Scotland.[2] This ship proved the advantages of power and economy of the new engine, in commercial service between the United Kingdom and the Far East.[3] The first warship to be so equipped was the Spanish warship Destructor, which was also built on Clydeside.[4] Other navies and commercial shipowners soon followed. Four-stage or quadrupal expansion engines were also used.

Several classes of steam locomotive have existed in both simple and compound form, most commonly when locomotives originally built as compound were converted to simple in order to gain power at the expense of efficiency, for example the majority of the NZR X class. Other conversions involved redesigning the details of the compounding, for example many compound locomotives designed by Alfred de Glehn and state of the art in their day were modified by André Chapelon to use his later scheme.

More recently, compounding has been applied to internal combustion engines. Turbo compound engines were extensively used as aircraft engines immediately after the Second World War.[5][6]

Diesel turbo compound engines remain in use in trucks and agricultural machinery.[7][8]


Napier Nomad turbo-compound aircraft engine, showing the turbine below. Modern compound truck and machinery engines use a similar configuration.
Compound steam engines
Cutaway diagram of a quadruple-expansion steam engine, showing four double-acting cylinders of increasing size 
Diagram showing the operation of a triple-expansion marine engine 
Cut away diagram of a triple expansion marine steam engine installation, circa 1918 
Compound traction engine with a single high pressure cylinder and a larger low pressure cylinder side by side on top of the boiler. This was a common configuration. 

See also


Inventors and designers

Similar technology


  1. ^ The Evolution of Compound Locomotives retrieved 7 December 2012
  2. ^ Day, Lance and McNeil, Ian (Editors) 2013, Biographical Dictionary of the History of Technology Routledge, ISBN 0-203-02829-5 (P. 694)
  3. ^ by David MiddletonMarine Engineering 1814-1984The Friends of Dundee City Archives -
  4. ^ Macksey, Kenneth Technology in War, ISBN 0-85368-825-7 p38
  5. ^ a b retrieved 9 December 2012
  6. ^ a b retrieved 9 December 2012
  7. ^ a b retrieved 7 December 2012 Turbo Compound technology consumes 5% less fuel when compared with a “conventional” engine of the same power
  8. ^ a b retrieved 7 December 2012 Fifty free horsepower customer brochure
  9. ^ retrieved 28 December 2012 Turbo compounding helps your rig use less fuel without sacrificing power
  10. ^ retrieved 28 December 2012 Turbo Compounding system recovers normally wasted exhaust gases and turns them into usable power without sacrificing fuel
  11. ^ (in German) retrieved 7 December 2012
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.