World Library  
Flag as Inappropriate
Email this Article




Chaparral, Santa Ynez Mountains, near Santa Barbara, California

Chaparral is a [1] The name comes from the Spanish word chaparro, applied to scrub oaks.


In its natural regime, chaparral is characterized by infrequent fires, with intervals ranging between 10–15 years to over a hundred years. Mature chaparral (stands that have been allowed greater intervals between fires) is characterized by nearly impenetrable, dense thickets (except the more open chaparral of the desert). These plants are highly flammable. They grow as woody shrubs with hard and small leaves; are non-leaf dropping (non-deciduous); and are drought tolerant. After the first rains following a fire, the landscape is dominated by soft-leaved non-woody annual plants, known as fire followers, which die back with the summer dry period.

Similar plant communities are found in the four other Mediterranean climate regions around the world, including the [1] The word chaparral is a loan word from Spanish chaparro, meaning both "small" and "dwarf" evergreen oak, which itself comes from the Basque word txapar, with exactly the same meaning.

biodiversity hotspot[2]- a biological community with a large number of different species - that are under threat by human activity.

California chaparral

California chaparral and woodlands ecoregion

Southern coastal scrub in the Santa Monica Mountains National Recreation Area

The California chaparral and woodlands ecoregion, of the Mediterranean forests, woodlands, and scrub Biome, has three sub-ecoregions with ecosystemplant community subdivisions:

Chaparral and woodlands biota

For the numerous individual plant and animal species found within the California chaparral and woodlands ecoregion, see the Flora of California chaparral and woodlands (index), and the Fauna of the California chaparral and woodlands (index).

Some of the indicator plants of the California chaparral and woodlands ecoregion include:

California cismontane and transmontane chaparral subdivisions

Another phytogeography system uses two California chaparral and woodlands subdivisions: the cismontane chaparral; and the transmontane (desert) chaparral.

California cismontane chaparral

Cismontane chaparral ("this side of the mountain") refers to a chaparral ecosystem in the Mediterranean forests, woodlands, and scrub Biome in California, growing on the western (and coastal) sides of large mountain range systems, such as: western slopes of the Sierra Nevada in the San Joaquin Valley foothills, western slopes of the Peninsular Ranges and California Coast Ranges, and south-southwest slopes of the Transverse Ranges in the Central Coast and Southern California regions.

Cismontane chaparral plant species

In Central and Southern California chaparral forms a dominant habitat. Members of the chaparral biota native to California, all of which tend to regrow quickly after fires, include:

Cismontane chaparral bird species

The complex ecology of chaparral habitats supports a very large number of animal species. the following is a short list of birds which are an integral part of the cismontane chaparral ecosystems.

The species essential to the health of the ecosystem include:
Very common inhabitant species include:

California transmontane (desert) chaparral

Transmontane chaparral or Desert chaparraltransmontane ("the other side of the mountain") chaparral — refers to the desert shrubland habitat and chaparral plant community growing in the rainshadow of these ranges. Transmontane chaparral features xeric desert climate - not Mediterranean climate habitats, and is also referred to as Desert chaparral.[3][4] Desert chaparral is a regional ecosystem subset of the Deserts and xeric shrublands Biome, with some plant species from the California chaparral and woodlands ecoregion. Unlike cismontain chaparral, which forms dense, impenatrable stands of plants, desert chaparral is open, with only about 50% of the ground covered.[5] Individual shrubs can reach up to 10 feet (3.0 m) in height.

View from the Laguna Mountains, chaparral in the foreground

Transmontane chaparral or Desert chaparral is found on the eastern slopes of major mountain range systems on the western sides of the deserts of California. The mountain systems include: the southeastern Transverse Ranges (the San Bernardino and San Gabriel Mountains) in the Mojave Desert north and northeast of the Los Angeles basin and Inland Empire; and the northern Peninsular Ranges (San Jacinto, Santa Rosa, and Laguna Mountains), which separate the Colorado Desert (western Sonoran Desert) from lower coastal Southern California.[6] It is distinguished from the cismontain chaparral found on the coastal side of the mountains, which experiences higher winter rainfall. Naturally, desert chaparral experiences less winter rainfall than cismontain chaparral. Plants in this community are characterized by small, hard (sclerophyllic) evergreen (non-dropping; non-deciduous) leaves. Desert chaparral grows above California's desert cactus scrub plant community, and below the Pinyon-juniper woodland. It is further distinguished from the deciduous sub-alpine scrub above the pinyon-juniper woodlands on the same side of the Peninsular ranges.

Transmontane chaparral distribution

Transmontane—Desert chaparral typically grows on the lower (3,500–4,500 feet (1,100–1,400 m) elevation) northern slopes of the southern Transverse Ranges (running east to west in San Bernardino and Los Angeles Counties) and on the lower (2,500–3,500 feet (760–1,070 m)) eastern slopes of the Peninsular Ranges (running south to north from lower Baja California to Riverside and Orange Counties and the Transverse Ranges).[7] It can also be found in higher elevation sky islands in the interior of the deserts, such as in the upper New York Mountains within the Mojave National Preserve in the Mojave Desert.

The California transmontane (desert) chaparral is found in the rain shadow deserts of the:

Transmontane chaparral plants
Transmontane chaparral animals

There is overlap of animals with those of the adjacent desert and Pinyon-Juniper communities.

Chaparral and wildfires

The Chaparral is a coastal biome with hot, dry summers and mild, rainy winters. The Chaparral area receives about 38–100 cm (15–39 in) of precipitation a year. This makes the chaparral most vulnerable to fire in the late summer and fall.

The chaparral ecosystem as a whole is adapted to be able to recover from infrequent wildfires (fires occurring a minimum of 15 years apart); indeed, chaparral regions are known culturally and historically for their impressive fires. (This does create a conflict with human development adjacent to and expanding into chaparral systems.) Before a major fire, typical chaparral plant communities are dominated by manzanita, chamise (also called greasewood or Adenostoma fasciculatum) and Ceanothus species, Toyon (which can sometimes be interspersed with scrub oaks), and other drought-resistant shrubs with hard (sclerophyllous) leaves; these plants resprout (see resprouter) from underground burls after a fire. Some chaparral plant communities may grow so dense and tall that it becomes difficult for large animals and humans to penetrate, but may be teeming with smaller fauna in the understory. Many chaparral plant species require some fire cue (heat, smoke, or charred wood, and chemical changes in the soil following fires) for germination. Others, such as annual and herbaceous species like Phacelia require fires to allow sunlight to reach them, and are known as fire followers. During the time shortly after a fire, chaparral communities may contain soft-leaved herbaceuous annual plants that dominate the community for the first few years - until the burl resprouts and seedlings of chaparral perennials create an overstory, blocking the sunlight from other plants in the community. When the overstory regrows, seeds of annuals and smaller plants may lie dormant until the next fire creates the conditions required for germination. Mid-sized plants such as Ceonothus fix nitrogen, while others cannot, which, together with the need for exposure to the sun, creates a symbiotic relationship of the entire community with infrequent fires.

Because of the hot, dry conditions that exist in the California summer and fall, chaparral is one of the most fire-prone plant communities in North America. Some fires are caused by lightning, but these are usually during periods of high humidity and low winds and are easily controlled. Nearly all of the very large wildfires are caused by human activity during periods of very hot, dry easterly Santa Ana winds. These man-made fires are commonly caused by power line failures, vehicle fires and collisions, sparks from machinery, arson, or campfires.

Wildfire debate

There are two assumptions relating to California chaparral fire regimes that appear to have caused considerable debate, and sometimes confusion and controversy, within the fields of wildfire ecology and land management.

  1. That older stands of chaparral become "senescent" or "decadent", thus implying that fire is necessary for the plants to remain healthy,[8]
  2. That wildfire suppression policies have allowed dead chaparral to accumulate unnaturally, creating ample fuel for large fires.[9]

The perspective that older chaparral is unhealthy or unproductive may have originated during the 1940s when studies were conducted measuring the amount of forage available to deer populations in chaparral stands. However, according to recent studies, California chaparral is extraordinarily resilient to very long periods without fire[10] and continues to maintain productive growth throughout pre-fire conditions.[11] Seeds of many chaparral plants actually require 30 years or more worth of accumulated leaf litter before they will successfully germinate (e.g. scrub oak: Quercus berberidifolia, toyon: Heteromeles arbutifolia, and holly-leafed cherry: Prunus ilicifolia). When intervals between fires drop below 10 to 15 years, many chaparral species are eliminated and the system is typically replaced by non-native, invasive, weedy grassland.[12]

The idea that older chaparral is responsible for causing large fires was originally proposed in the 1980s by comparing wildfires in Baja California and southern California . It was suggested that fire suppression activities in southern California allowed more fuel to accumulate, which in turn led to larger fires (in Baja, fires often burn without active suppression efforts ). This is similar to the argument that fire suppression in western United States has allowed Ponderosa Pine forests to become “overstocked”. In the past, surface-fires burned through these forests at intervals of anywhere between 4 and 36 years, clearing out the understory and creating a more ecologically balanced system. However, chaparral has a crown-fire regime, meaning that fires consume the entire system whenever they burn. In one study, a detailed analysis of historical fire data concluded that fire suppression activities have failed to exclude fire from southern California chaparral, as they have in Ponderosa Pine forests.[13] In addition, the number of fires is increasing in step with population growth. Chaparral stand age does not have a significant correlation to its tendency to burn.[14] Low humidity, low fuel moisture, and high winds appear to be the primary factors in determining when, where, and how large a chaparral fire burns.

See also


  1. ^ a b [1]
  2. ^ "The Biodiversity Hotspots_Conservation International". 
  3. ^ a b A Natural History of California, Allan A. Schoenerr, Figure 8.9 - 8.10, Table 8.2
  4. ^ a b County of San Diego Department of Planning and Land Use Multiple Species Conservation Program, [2]
  5. ^
  6. ^ A Natural History of California, Allan A. Schoenherr, pp.8-9, 357, 327, ISBN 978-0-520-06922-0
  7. ^ A Natural History of California, Allan A. Schoenherr, pp.327, Figure 8.9, ISBN 978-0-520-06922-0
  8. ^ (Hanes 1971)
  9. ^ (Minnich 1983)
  10. ^ (Keeley, Pfaff, and Safford 2005)
  11. ^ (Hubbard 1986, Larigauderie et al. 1990)
  12. ^ (Haidinger and Keeley 1993, Keeley 1995, Zedler 1995)
  13. ^ (Keeley et al. 1999)
  14. ^ (Moritz et al. 2004)


  • Haidinger, T.L., and J.E. Keeley. 1993. Role of high fire frequency in destruction of mixed chaparral. Madrono 40: 141–147.
  • Halsey, R.W. 2008. Fire, Chaparral, and Survival in Southern California. Second Edition. Sunbelt Publications, San Diego, CA. 232 p.
  • Hanes, T. L. 1971. Succession after fire in the chaparral of southern California. Ecol. Monographs 41: 27–52.
  • Hubbard, R.F. 1986. Stand age and growth dynamics in chamise chaparral. Master’s thesis, San Diego State University, San Diego, California.
  • Keeley, J. E., C. J. Fotheringham, and M. Morais. 1999. Reexamining fire suppression impacts on brushland fire regimes. Science 284:1829–1832.
  • Keeley, J.E. 1995. Future of California floristics and systematics: wildfire threats to the California flora. Madrono 42: 175–179.
  • Keeley, J.E., A.H. Pfaff, and H.D. Stafford. 2005. Fire suppression impacts on postfire recovery of Sierra Nevada chaparral shrublands. International Journal of Wildland Fire 14: 255–265.
  • Larigauderie, A., T.W. Hubbard, and J. Kummerow. 1990. Growth dynamics of two chaparral shrub species with time after fire. Madrono 37: 225–236.
  • Minnich, R. A. 1983. Fire mosaics in southern California and northern Baja California. Science 219:1287–1294.
  • Moritz, M.A., J.E. Keeley, E.A. Johnson, and A.A. Schaffner. 2004. Testing a basic assumption of shrubland fire management: How important is fuel age? Frontiers in Ecology and the Environment 2:67–72.
  • Zedler, P.H. 1995. Fire frequency in southern California shrublands: biological effects and management options, pp. 101–112 in J.E. Keeley and T. Scott (eds.), Brushfires in California wildlands: ecology and resource management. International Association of Wildland Fire, Fairfield, Wash.
  • Campbell, Neil A.; Brad Williamson; Robin J. Heyden (2006). Biology: Exploring Life. Boston, Massachusetts: Pearson Prentice Hall.  

External links

  • The California Chaparral Institute website

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.