World Library  
Flag as Inappropriate
Email this Article

Balancing domain decomposition method

Article Id: WHEBN0016252572
Reproduction Date:

Title: Balancing domain decomposition method  
Author: World Heritage Encyclopedia
Language: English
Subject: Domain decomposition methods, Neumann–Neumann methods, Abstract additive Schwarz method, Neumann–Dirichlet method, Fictitious domain method
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Balancing domain decomposition method

In numerical analysis, the balancing domain decomposition method (BDD) is an iterative method to find the solution of a symmetric positive definite system of linear algebraic equations arising from the finite element method.[1] In each iteration, it combines the solution of local problems on non-overlapping subdomains with a coarse problem created from the subdomain nullspaces. BDD requires only solution of subdomain problems rather than access to the matrices of those problems, so it is applicable to situations where only the solution operators are available, such as in oil reservoir simulation by mixed finite elements.[2] In its original formulation, BDD performs well only for 2nd order problems, such elasticity in 2D and 3D. For 4th order problems, such as plate bending, it needs to be modified by adding to the coarse problem special basis functions that enforce continuity of the solution at subdomain corners,[3] which makes it however more expensive. The BDDC method uses the same corner basis functions as,[3] but in an additive rather than multiplicative fashion.[4] The dual counterpart to BDD is FETI, which enforces the equality of the solution between the subdomain by Lagrange multipliers. The base versions of BDD and FETI are not mathematically equivalent, though a special version of FETI designed to be robust for hard problems [5] has the same eigenvalues and thus essentially the same performance as BDD.[6][7]

The operator of the system solved by BDD is the same as obtained by eliminating the unknowns in the interiors of the subdomain, thus reducing the problem to the Schur complement on the subdomain interface. Since the BDD preconditioner involves the solution of Neumann problems on all subdomain, it is a member of the Neumann-Neumann class of methods, so named because they solve a Neumann problem on both sides of the interface between subdomains.

In the simplest case, the coarse space of BDD consists of functions constant on each subdomain and averaged on the interfaces. More generally, on each subdomain, the coarse space needs to only contain the nullspace of the problem as a subspace.

References

  1. ^ J. Mandel, Balancing domain decomposition, Comm. Numer. Methods Engrg., 9 (1993), pp. 233–241. doi:10.1002/cnm.1640090307
  2. ^ L. C. Cowsar, J. Mandel, and M. F. Wheeler, Balancing domain decomposition for mixed finite elements, Math. Comp., 64 (1995), pp. 989–1015. doi:10.1090/S0025-5718-1995-1297465-9
  3. ^ a b P. Le Tallec, J. Mandel, and M. Vidrascu, A Neumann–Neumann domain decomposition algorithm for solving plate and shell problems, SIAM Journal on Numerical Analysis, 35 (1998), pp. 836–867. doi:10.1137/S0036142995291019
  4. ^ J. Mandel and C. R. Dohrmann, Convergence of a balancing domain decomposition by constraints and energy minimization, Numer. Linear Algebra Appl., 10 (2003), pp. 639--659. doi:10.1002/nla.341
  5. ^ M. Bhardwaj, D. Day, C. Farhat, M. Lesoinne, K. Pierson, and D. Rixen, Application of the FETI method to ASCI problems -- scalability results on 1000 processors and discussion of highly heterogeneous problems, International Journal for Numerical Methods in Engineering, 47 (2000), pp. 513–535. doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<513::AID-NME782>3.0.CO;2-V
  6. ^ Y. Fragakis, Force and displacement duality in Domain Decomposition Methods for Solid and Structural Mechanics. To appear in Comput. Methods Appl. Mech. Engrg., 2007.
  7. ^ B. Sousedík and J. Mandel, On the equivalence of primal and dual substructuring preconditioners. arXiv:math/0802.4328, 2008.

External links

  • BDD reference implementation at mgnet.org
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.