World Library  
Flag as Inappropriate
Email this Article

Atmosphere (unit)

Article Id: WHEBN0000582780
Reproduction Date:

Title: Atmosphere (unit)  
Author: World Heritage Encyclopedia
Language: English
Subject: Convert/testcases/bytype/energy4, Convert/testcases/bytype/energy3, Conversion of units, Bar (unit), Torr
Collection: Atmosphere, Units of Pressure
Publisher: World Heritage Encyclopedia

Atmosphere (unit)

The standard atmosphere (symbol: atm) is a unit of pressure defined as 101325 Pa (1.01325 bar). It is sometimes used as a reference or standard pressure.


  • History 1
  • Pressure units and equivalencies 2
  • Other applications 3
  • See also 4
  • References 5


In 1954 the 10th Conférence Générale des Poids et Mesures (CGPM) adopted standard atmosphere for general use and affirmed its definition of being precisely equal to 1,013,250 dynes per square centimetre (101325 Pa) .[1] This value was intended to represent the mean atmospheric pressure at mean sea level at the latitude of Paris, France, and does reflect the mean sea level pressure for many industrialized nations that are at broadly similar latitudes.

In chemistry and in various industries, the reference pressure referred to in “Standard Temperature and Pressure” (STP) was commonly 1 atm (101.325 kPa) but standards have since diverged; in 1982, the International Union of Pure and Applied Chemistry (IUPAC) recommended that for the purposes of specifying the physical properties of substances, “standard pressure” should be precisely 100 kPa (1 bar).[2]

Pressure units and equivalencies

Pressure units
Pascal Bar Technical atmosphere Standard atmosphere Torr Pounds per square inch
(Pa) (bar) (at) (atm) (Torr) (psi)
1 Pa ≡ 1 N/m2 10−5 1.0197×10−5 9.8692×10−6 7.5006×10−3 1.450377×10−4
1 bar 105 ≡ 100 kPa

≡ 106 dyn/cm2

1.0197 0.98692 750.06 14.50377
1 at 0.980665×105 0.980665 ≡ 1 kp/cm2 0.9678411 735.5592 14.22334
1 atm 1.01325×105 1.01325 1.0332 1 760 14.69595
1 Torr 133.3224 1.333224×10−3 1.359551×10−3 1.315789×10−3 1/760 atm

≈ 1 mmHg

1 psi 6.8948×103 6.8948×10−2 7.03069×10−2 6.8046×10−2 51.71493 ≡ 1 lbF /in2

A pressure of 1 atm can also be stated as:

≡ 1.01325 bar
≡ 101325 pascal (Pa) or 101.325 kilopascal (kPa)
≡ 1013.25 millibars (mbar, also mb)
≡ 760 torr[n 1]
≈ 760.001 mm-Hg, 0 °C, subject to revision as more precise measurements of mercury’s density become available[n 2][n 3]
≈ 29.9213 in-Hg, 0 °C, subject to revision as more precise measurements of mercury’s density become available[n 3]
≈ 1.033 227 452 799 886 kgf/cm²
≈ 1.033 227 452 799 886 technical atmosphere
≈ 1033.227 452 799 886 cm–H2O, 4 °C[n 2]
≈ 406.782 461 732 2385 in–H2O, 4 °C[n 2]
≈ 14.695 948 775 5134 pounds-force per square inch (psi)
≈ 2116.216 623 673 94 pounds-force per square foot (psf)
= 1 ata. The ata unit is used in place of atm to indicate that the pressure shown is the total ambient pressure, compared to vacuum, of the system being calculated or measured.[3] For example, for underwater pressures, a pressure of 3.1 ata would mean that the 1 atm of the air above water is included in this value and the pressure due to water would total 2.1 atm.
  1. ^ Torr and mm-Hg, 0°C are often taken to be identical. For most practical purposes (to 5 significant digits), they are interchangeable.
  2. ^ a b c This is the customarily accepted value for cm–H2O, 4 °C. It is precisely the product of 1 kg-force per square centimeter (one technical atmosphere) times 1.013 25 (bar/atmosphere) divided by 0.980 665 (one gram-force). It is not accepted practice to define the value for water column based on a true physical realization of water (which would be 99.997 495% of this value because the true maximum density of Vienna Standard Mean Ocean Water is 0.999 974 95 kg/l at 3.984 °C). Also, this “physical realization” would still ignore the 8.285 cm–H2O reduction that would actually occur in a true physical realization due to the vapor pressure over water at 3.984 °C.
  3. ^ a b NIST value of 13.595 078(5) g/ml assumed for the density of Hg at 0 °C

Other applications

Scuba divers and others use the word atmosphere and "atm" in relation to pressures that are relative to mean atmospheric pressure at sea level (1.013 bar). For example, a partial pressure of oxygen is calibrated typically using air at sea level, so is expressed in units of atm.

The old European unit technical atmosphere (at) is equal to 1 kilogram-force per square centimetre (kgf/cm2), 98066.5 Pa.

See also


  1. ^ BIPM Definition of the standard atmosphere
  2. ^, Gold Book, Standard Pressure
  3. ^ Scuba Diving & Other Fun Activities, The Difference Between An ATM & An ATA
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.