World Library  
Flag as Inappropriate
Email this Article

An/apg-68

Article Id: WHEBN0003031362
Reproduction Date:

Title: An/apg-68  
Author: World Heritage Encyclopedia
Language: English
Subject: General Dynamics F-16 Fighting Falcon, Synthetic aperture radar, Equipment of the United States Air Force, JL-10A, General Dynamics F-16 Fighting Falcon variants
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

An/apg-68

The AN/APG-68 radar is a long range (up to 296 km)[1] Pulse-doppler radar designed by Westinghouse (now Northrop Grumman) to replace AN/APG-66 radar in the F-16 Fighting Falcon. The AN/APG-68(V)8 and earlier radar system consists of the following line-replaceable units:

The AN/APG-68(V)9[2] radar system consists of the following line-replaceable units:

  • Antenna
  • Medium Duty Transmitter (MDT)
  • Modular Receiver/Exciter (MoRE)
  • Common Radar Processor (CoRP)

The AN/APG-68(V)9 radar is the latest development. Besides the increase in scan range compared to the previous version, it has a Synthetic aperture radar (SAR) capability.

The APG-68(V)9 has equipped several variants, including the F-16D Block 52+s of the Israeli Air Force, Republic of Singapore Air Force, Turkish Air Force,[3] Moroccan Air Force and Greek Air Force, Pakistan Air Force,F-16C/D Block 52+s of the Polish Air Force and F-16 A/B Block 15 MLU of the Royal Thai Air Force

Specifications

  • Frequency: Starting Envelope frequency around 9.86 GHz.
  • Under AIS Testing as high as 26 GHz
  • Range: 296.32 km, 184 miles
  • Range for 5m2 aerial target is 105km[4]
  • Search cone: 120 degrees × 120 degrees
  • Azimuth angular coverage: ±10 degrees / ± 30 degrees / ± 60 degrees
  • Programmable Signal Processor (PSP) - The core radar component which is responsible for signal processing, frequency selection, signal digitization for B-Scope display. The PSP is controlled through the F-16 Heads Down Display Set (HDDS) or what is commonly called the Multi-Function Displays (MFDs). The PSP is directed by the system operational flight program (OFP), which is controlled and modified for new threats or addition radar system requirements. The PSP also contains all the controls circuitry for radar A/A and A/G operational scan patterns and SAR/ISAR operation.
  • Modular Low Powered Radio Frequency (MLPRF) - The frequency generator for the radar system. Frequency generation is dependent on the random frequency selection from the radar tables within the PSP upon system start-up. The MLPRF will generate a small amount of RF Drive, which is sent to the Dual Mode Transmitter (DMT), where it is amplified and a small RF sample is sent to the MLPRF for comparison checksum (more like a check and balance system). The MLPRF also is responsible for the receiving of the radar return, generating the RF injection noise (for RF discrimination), and the processed RF within the MLPRF is then later sent to the PSP for video processing and threat/target matching against the radar threat tables within the PSP, prior to flightcrew system display.
  • Dual Mode Transmitter (DMT) - A 24,000 volt radar transmitter, containing a TWT, which generates the amplified RF to be sent to the radar Antenna for system emission. The TWT operates by optical pulses received from the DMT's internal Pulse Decker Unit and TWT Cathode/Anode voltage inputs.
  • Antenna - A planar array antenna, which is constructed to receive RF data through a waveguide system. The transmitted and received pulses are controlled in time by the PMW (Pulse Modulated Wave) radar design, and the waveguide duplexer assembly. Internal to the antenna are Uniphaser Assemblies (used for quadrature phase control), Phase Shifters (used of quadrature I/Q data) and gimbalized motor control for antenna positioning and position correction.

References

  1. ^ http://www.deagel.com/Aircraft-Warners-and-Sensors/ANAPG-68_a001560001.aspx
  2. ^ http://www.es.northropgrumman.com/solutions/apg68/assets/APG68.pdf
  3. ^ http://www.flightglobal.com/articles/2009/02/25/323057/turkey-completes-deal-for-30-new-f-16s.html
  4. ^ http://defence.pk/threads/radar-ranges-of-different-fighters.94948/page-7

External links

  • Northrop Grumman APG-68(V)9 Site
  • AN/APG-68 Global Security.com
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.