World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000004802
Reproduction Date:

Title: Biome  
Author: World Heritage Encyclopedia
Language: English
Subject: Chaparral, Chilean Matorral, Flooded grasslands and savannas, Central American montane forests, Tundra
Collection: Biomes, Habitats
Publisher: World Heritage Encyclopedia


China and the United States have the highest number of biomes.
A biome is a formation of plants and animals that have common characteristics due to similar climates and can be found over a range of continents.[1] Biomes are distinct from habitats, because any biome can comprise a variety of habitats.


  • Classification 1
    • Holdridge 1.1
    • Whittaker's biome-type classification scheme 1.2
      • Key definitions for understanding Whittaker's scheme 1.2.1
      • Whittaker's parameters for classifying biome-types 1.2.2
    • Walter system 1.3
    • Bailey system 1.4
    • WWF system 1.5
      • Freshwater biomes 1.5.1
      • Realms or ecozones (terrestrial and freshwater, WWF) 1.5.2
      • Marine biomes 1.5.3
        • Marine biomes (H) (major habitat types), Global 200 (WWF)
        • Realms or ecozones (marine, WWF)
        • Other marine habitat types
          • Major habitats, nonglobal 200 (WWF)
      • Summary – ecological taxonomy (WWF) 1.5.4
  • Anthropogenic biomes 2
    • Major anthropogenic biomes 2.1
  • Other biomes 3
    • Map of biomes 3.1
    • Freshwater biomes 3.2
  • See also 4
  • References 5
  • External links 6


Biomes are defined by climate regimes and biogeography.

A 1978 study on North American grasslands[2] found a positive logistic correlation between evapotranspiration in mm/yr and above-ground net primary production in g/m2/yr. The general results from the study were that precipitation and water use led to above-ground primary production, while solar irradiation and temperature lead to below-ground primary production (roots), and temperature and water lead to cool and warm season growth habit.[3] These findings help explain the categories used in Holdridge’s bioclassification scheme (see below), which were then later simplified by Whittaker. The number of classification schemes and the variety of determinants used in those schemes, however, should be taken as strong indicators that biomes do not fit perfectly into the classification schemes created.


Holdridge classified climates based on the biological effects of temperature and rainfall on vegetation under the assumption that these two abiotic factors are the largest determinants of the types of vegetation found in a habitat. Holdridge uses the four axes to define 30 so-called "humidity provinces", which are clearly visible in his diagram. While this scheme largely ignores soil and sun exposure, Holdridge acknowledged that these were important.

Whittaker's biome-type classification scheme

The distribution of vegetation types as a function of mean annual temperature and precipitation.

Whittaker classified biomes using two abiotic factors: precipitation and temperature. His scheme can be seen as a simplification of Holdridge's; more readily accessible, but missing Holdridge's greater specificity.

Whittaker based his approach on theoretical assertions and empirical sampling. He was in a unique position to make such a holistic assertion because he had previously compiled a review of biome classifications.[4]

Key definitions for understanding Whittaker's scheme


The apparent characteristics, outward features, or appearance of ecological communities or species.


A major kind of community of plants on a given continent.


Grouping of convergent biomes or formations of different continents, defined by physiognomy.


A grouping of convergent formations.

Whittaker's distinction between biome and formation can be simplified: formation is used when applied to plant communities only, while biome is used when concerned with both plants and animals. Whittaker's convention of biome-type or formation-type is simply a broader method to categorize similar communities.[5]

Whittaker's parameters for classifying biome-types

Whittaker, seeing the need for a simpler way to express the relationship of community structure to the environment, used what he called "gradient analysis" of ecocline patterns to relate communities to climate on a worldwide scale. Whittaker considered four main ecoclines in the terrestrial realm.[5]

  1. Intertidal levels: The wetness gradient of areas that are exposed to alternating water and dryness with intensities that vary by location from high to low tide
  2. Climatic moisture gradient
  3. Temperature gradient by altitude
  4. Temperature gradient by latitude

Along these gradients, Whittaker noted several trends that allowed him to qualitatively establish biome-types:

  • The gradient runs from favorable to extreme, with corresponding changes in productivity.
  • Changes in physiognomic complexity vary with how favorable of an environment exists (decreasing community structure and reduction of stratal differentiation as the environment becomes less favorable).
  • Trends in diversity of structure follow trends in species diversity; alpha and beta species diversities decrease from favorable to extreme environments.
  • Each growth-form (i.e. grasses, shrubs, etc.) has its characteristic place of maximum importance along the ecoclines.
  • The same growth forms may be dominant in similar environments in widely different parts of the world.

Whittaker summed the effects of gradients (3) and (4) to get an overall temperature gradient, and combined this with gradient (2), the moisture gradient, to express the above conclusions in what is known as the Whittaker classification scheme. The scheme graphs average annual precipitation (x-axis) versus average annual temperature (y-axis) to classify biome-types.

Walter system

The eponymously-named Heinrich Walter classification scheme considers the seasonality of temperature and precipitation. The system, also assessing precipitation and temperature, finds nine major biome types, with the important climate traits and vegetation types. The boundaries of each biome correlate to the conditions of moisture and cold stress that are strong determinants of plant form, and therefore the vegetation that defines the region. Extreme conditions, such as flooding in a swamp, can create different kinds of communities within the same biome.

I. Equatorial
  • Always moist
  • Little temperature seasonality
  • Evergreen tropical rain forest
II. Tropical
  • Summer rainy season and cooler “winter” dry season
  • Seasonal forest, scrub, or savanna
III. Subtropical
  • Highly seasonal, arid climate
  • Desert vegetation with considerable exposed surface
IV. Mediterranean
  • Winter rainy season and summer drought
  • Sclerophyllous (drought-adapted), frost-sensitive shrublands and woodlands
V. Warm temperate
  • Occasional frost, often with summer rainfall maximum
  • Temperate evergreen forest, somewhat frost-sensitive
VI. Nemoral
  • Moderate climate with winter freezing
  • Frost-resistant, deciduous, temperate forest
VII. Continental
  • Arid, with warm or hot summers and cold winters
  • Grasslands and temperate deserts
VIII. Boreal
  • Cold temperate with cool summers and long winters
  • Evergreen, frost-hardy, needle-leaved forest (taiga)
IX. Polar
  • Short, cool summers and long, cold winters
  • Low, evergreen vegetation, without trees, growing over permanently frozen soils

Bailey system

Robert G. Bailey nearly developed a biogeographical classification system for the United States in a map published in 1976. He subsequently expanded the system to include the rest of North America in 1981, and the world in 1989. The Bailey system, based on climate, is divided into seven domains (polar, humid temperate, dry, humid, and humid tropical), with further divisions based on other climate characteristics (subarctic, warm temperate, hot temperate, and subtropical; marine and continental; lowland and mountain).[6]

  • 100 Polar Domain
    • 120 Tundra Division (Köppen: Ft)
    • M120 Tundra Division – Mountain Provinces
    • 130 Subarctic Division (Köppen: E)
    • M130 Subarctic Division – Mountain Provinces
  • 200 Humid Temperate Domain
    • 210 Warm Continental Division (Köppen: portion of Dcb)
    • M210 Warm Continental Division – Mountain Provinces
    • 220 Hot Continental Division (Köppen: portion of Dca)
    • M220 Hot Continental Division – Mountain Provinces
    • 230 Subtropical Division (Köppen: portion of Cf)
    • M230 Subtropical Division – Mountain Provinces
    • 240 Marine Division (Köppen: Do)
    • M240 Marine Division – Mountain Provinces
    • 250 Prairie Division (Köppen: arid portions of Cf, Dca, Dcb)
    • 260 Mediterranean Division (Köppen: Cs)
    • M260 Mediterranean Division – Mountain Provinces
  • 300 Dry Domain
    • 310 Tropical/Subtropical Steppe Division
    • M310 Tropical/Subtropical Steppe Division – Mountain Provinces
    • 320 Tropical/Subtropical Desert Division
    • 330 Temperate Steppe Division
    • 340 Temperate Desert Division
  • 400 Humid Tropical Domain
    • 410 Savanna Division
    • 420 Rainforest Division

WWF system

A team of biologists convened by the World Wildlife Fund (WWF) developed an ecological land classification system that identified fourteen biomes,[7] called major habitat types, and further divided the world's land area into 882 terrestrial ecoregions (includes new Antarctic ecoregions by Terrauds et al. 2012). Each terrestrial ecoregion has a specific EcoID, format XXnnNN (XX is the ecozone, nn is the biome number, NN is the individual number). This classification is used to define the Global 200 list of ecoregions identified by the WWF as priorities for conservation. The WWF major habitat types are:

Freshwater biomes

According to the WWF, the following are classified as freshwater biomes:[8]
  • Streams and rivers

Realms or ecozones (terrestrial and freshwater, WWF)

Marine biomes

Marine biomes (H) (major habitat types), Global 200 (WWF)

Biomes of the coastal and continental shelf areas (neritic zone – List of ecoregions (WWF))

Realms or ecozones (marine, WWF)
Other marine habitat types
Major habitats, nonglobal 200 (WWF)

Summary – ecological taxonomy (WWF)


Anthropogenic biomes

Humans have altered global patterns of biodiversity and ecosystem processes. As a result, vegetation forms predicted by conventional biome systems can no longer be observed across much of Earth's land surface as they have been replaced by crop and rangelands or cities. Anthropogenic biomes provide an alternative view of the terrestrial biosphere based on global patterns of sustained direct human interaction with ecosystems, including agriculture, human settlements, urbanization, forestry and other uses of land. Anthropogenic biomes offer a new way forward in ecology and conservation by recognizing the irreversible coupling of human and ecological systems at global scales and moving us toward an understanding of how best to live in and manage our biosphere and the anthropogenic biomes we live in.

Major anthropogenic biomes

  • Dense settlements
  • Croplands
  • Rangelands
  • Forested
  • Indoor[10]

Other biomes

The endolithic biome, consisting entirely of microscopic life in rock pores and cracks, kilometers beneath the surface, has only recently been discovered, and does not fit well into most classification schemes.

Map of biomes

Freshwater biomes

Major continental divides, showing drainage into the major oceans and seas of the world – grey areas are endorheic basins that do not drain to the ocean.

The drainage basins of the principal oceans and seas of the world are marked by continental divides. The grey areas are endorheic basins that do not drain to the ocean.

See also


  1. ^ The World's Biomes, Retrieved August 19, 2008, from University of California Museum of Paleontology
  2. ^
  3. ^ Pomeroy, Lawrence R. and James J. Alberts, editors. Concepts of Ecosystem Ecology. New York: Springer-Verlag, 1988.
  4. ^ Whittaker, Robert H., Botanical Review, Classification of Natural Communities, Vol. 28, No. 1 (Jan–Mar 1962), pp. 1–239.
  5. ^ a b Whittaker, Robert H. Communities and Ecosystems. New York: MacMillan Publishing Company, Inc., 1975.
  6. ^ Bailey System, US Forest Service
  7. ^ Olson et al. (2001); Terrestrial Ecoregions of the World: A New Map of Life on Earth, BioScience, Vol. 51, No. 11., pp. 933–938.
  8. ^ "Freshwater Ecoregions of the World: Major Habitat Types" [1]. Accessed May 12, 2008.
  9. ^ WWF: Marine Ecoregions of the World
  10. ^

External links

  • Biomes of the world (Missouri Botanic Garden)
  • Global Currents and Terrestrial Biomes Map
  • is a site covering the 5 principal world biome types: aquatic, desert, forest, grasslands, and tundra.
  • UWSP's online textbook The Physical Environment: – Earth Biomes
  •'s Habitats – describes the 14 major terrestrial habitats, 7 major freshwater habitats, and 5 major marine habitats.
  •'s Habitats Simplified – provides simplified explanations for 10 major terrestrial and aquatic habitat types.
  • UCMP Berkeley's The World's Biomes – provides lists of characteristics for some biomes and measurements of climate statistics.
  • Gale/Cengage has an excellent Biome Overview of terrestrial, aquatic, and man-made biomes with a particular focus on trees native to each, and has detailed descriptions of desert, rain forest, and wetland biomes.
  • NASA's Earth Observatory Mission: Biomes gives an exemplar of each biome that is described in detail and provides scientific measurements of the climate statistics that define each biome.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.