Search Results (14 titles)

Searched over 21.6 Million titles in 0.3 seconds

 
Chinese (X) PDF (eBook) (X) Most Popular Books in China (X)

       
1
Records: 1 - 14 of 14 - Pages: 
  • Cover Image

Ch'uan Shen Hsing Wen

By: Unknown

An inscription dating to around 1020 A.D. about the Northern Song Dynasty (960 - 1127).

Read More
  • Cover Image

Smarandache未解决的问题 及其新进展 (Smarandache Unsolved Problems and New Progress), Volume 3

By: Liu Yanni; Li Ling

This book will mainly make part of the research results of current domestic and foreign scholars on Smarandache problems and unsolved problems into a book. Its main purpose is to introduce some of the research of Smarandache problems to readers, comprehensively and systematically, including the mean value of arithmetic functions, identities and inequalities, infinite series, the solutions of special equations, and put forward to some new interesting problems. We hope that the readers could be interested in these issues. At the same time, this book could open up the reader’s perspective, guide and inspire the readers to these fields....

Read More
  • Cover Image

Smarandache 未解决问题研究 (Smarandache Unresolved Problems), Volume 5

By: Jianghua Li; Yanchun Guo

前言 数论这门学科最初是从研究整数开始的, 所以叫做整数论. 后来整数 论又进一步发展, 就叫做数论了. 确切的说, 数论就是一门研究整数性质 的学科. 它是最古老的数学分支. 按照研究方法来说, 数论可以分成初等 数论, 解析数论, 代数数论, 超越数论, 计算数论, 组合数论等. Foreword Number theory, this discipline was originally started from the study integer, so called Number Theory. Later integer on further development of number theory called it. Rather, number theory is an integer nature of disciplines and it is the oldest branch of mathematics concerned by the study methods, can be divided into elementary number theory, number theory, analytic number theory, algebraic number theory, transcendental number theory, computational number theory, combinatorics number theory and so on....

第一章Smarandache函数. . . . . . . . . . . . 1 1.1 引言. . . . . . . . . . . . . . . . . . . . . . . 1 1.2 关于F.Smarandache可乘数函数的一类均值. . . . . . 1 1.3 Smarandache函数值的分布. . . . . . . . . . . . . 5 1.3.1 几个引理. . . . . . . . . . . . . . . . . . . 6 1.3.2 证明. . . . . . . . . . . . . . . . . . . . . 7 1.4 Smarandache函数df (n) 的均值. . . . . . . . . . . . 9 1.5 关于F.Smarandache LCM 函数以及它的主值. . . . . . 12 1.6 Smarandache Pierced 链. . . . . . . . . . . . . . . 16 1.7 Smarandache 函数的几个相关结论. . . . . . . . . . 18 1.7.1 关于Smarandache 函数的一个等式. . . . . . . . 18 1.7.2 关于文章\一个新的算术函数的主值"的一些注释. . 20 1.7.3 Smarandache 函数的一个推广. . . . . . . . . . 23 1.7.4 关于F.Smarandache函数及其k次补数. . . . . . . 27 1.7.5 关于F.Smarandache函数的奇偶性. . . . . . . . 32 第二章伪Smarandache 函数. . . . . . . . . . . . 36 2.1 伪Smarandache 函数的定义及性质. . . . . . . . . . 36 2.2 关于伪Smarandache函数的几个定理. . . . . . . . . 38 2.3 关于伪Smarandache 函数的几个方程. . . . . . . . . 40 2.3.1 一个与Smarandache函数有关的函数方程及其正整 数解. . . . . . . . . . . . . . . . . . . . . 41 2.3.2 一个包含伪Smarandache函数及其对偶函数的方程. 42 2.3.3 一个包含伪Smarandache 函数及Smarandache 可乘 函数的方程. . . . . . . . . . . . . . . . . . 45 2.4 伪Smarandache函数的...

Read More
  • Cover Image

关于 Smarandache 理论 及其有关问题 (On the Smarandache Notions and Related Problems), Volume 4

By: Wang Yu; Su Juanli

前言 数论这门学科最初是从研究整数开始的, 所以叫做整数论. 后来整数 论又进一步发展, 就叫做数论了. 确切的说, 数论就是一门研究整数性质 的学科. 在我国, 数论也是发展最早的数学分支之一. 许多著名的数学著 作中都有关于数论内容的论述, 比如求最大公约数、勾股数组、某些不 定方程整数解的问题等等... Foreword Number theory, this discipline was originally started from the study integer, so called Number Theory. Later integer on further development of number theory called it. Rather, number theory is an integer nature of Discipline in our country, the development of number theory is one of the oldest branches of mathematics and many well-known mathematical forward work on number theory in both the content of discourse, such as the common denominator, Pythagorean, some do not Equation given integer solution problems, and so…....

第一章Smarandache函数的问题及其新进展1 1.1 引言. . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Smarandache非构造序列. . . . . . . . . . . . . . 1 1.3 Smarandache数字和. . . . . . . . . . . . . . . . 2 1.4 Smarandache数字乘积. . . . . . . . . . . . . . . 2 1.5 Smarandache Pierced链. . . . . . . . . . . . . . . 3 1.6 Smarandache因子乘积. . . . . . . . . . . . . . . 4 1.7 Smarandache真因子乘积. . . . . . . . . . . . . . 5 1.8 Smarandache平方补数. . . . . . . . . . . . . . . 6 1.9 Smarandache立方补数. . . . . . . . . . . . . . . 7 1.10 Smarandache广义剩余序列. . . . . . . . . . . . . 7 1.11 Smarandache素数列. . . . . . . . . . . . . . . . 8 1.12 Smarandache平方列. . . . . . . . . . . . . . . . 13 1.13 Smarandache素数可加补数. . . . . . . . . . . . . 15 1.14 Smarandache函数S(n) . . . . . . . . . . . . . . . 19 1.15 Smarandache双阶乘函数. . . . . . . . . . . . . . 31 1.16 Smarandache商函数. . . . . . . . . . . . . . . . 42 1.17 Smarandache p次幂原函数. . . . . . . . . . . . . . 43 1.18 第一类伪Smarandache素数. . . . . . . . . . . . . 43 1.19 第一类伪Smarandache平方数. . . . . . . . . . . . 44 1.20 Goldbach-Smarandache序列. . . . . . . . . . . . . 46 1.21 Vinogradov-Smarandache序列. . . . . . . . . . . . 46 ...

Read More
  • Cover Image

Smarandache 问 题 新 进 展 (Smarandache Question : New Exhibition), Volume 2

By: Chen Guohui

This book includes part of the research results about the Smarandache problems written by Chinese scholars at present, and its main purpose is to introduce various results about the Smarandache problems, such as Smarandache function and its asymptotic properties, series convergence, solutions about special equations. At the same time, we put forward to some new interesting problems either in order to research further. We hope this booklet will guide and inspire readers to these fields....

前言 数论这门学科最初是从研究整数开始的, 所以叫整数数论. 后来整数 数论又进一步发展, 就叫做数论了. 确切地说, 数论就是一门研究整数性 质的学科. 数论和几何学一样, 是古老的数学分支. 数论在数学中的地位是特殊的, 高斯曾经说过:“数学是科学的皇后, 数论是数学中的皇冠”. 虽然数论中的许多问题在很早就开始了研究, 并得到了丰硕的成果, 但是至今仍有许多被数学家称之为“皇冠上的明 珠”的悬而未解的问题等待人们去解决. 正因如此, 数论才能不断地充 实和发展, 才能既古老又年轻, 才能始终活跃在数学领域的前沿. Foreword Number theory, this discipline was originally started from the study integer, so called integer number theory. Later integer further development of number theory, number theory called up. Rather, number theory is an integer of study qualitative disciplines. Number theory and geometry, is an ancient branch of mathematics. Number theory in mathematics position is special, Gauss once said: "Mathematics is the queen of sciences, number theory is the mathematics of the crown. "Although many of the problems in number theory began very early in the research, And has been fruitful, but there are still many of the mathematicians call "crown Ming Pearl "of unsolved problems waiting to be solved for this reason, number theory can continue to charge Real and development in order to both old and young, can always active in the forefront of the field of mathematics....

目录 第一章Smarandache 函数1 1.1 引言. . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 S(n) 函数和d(n) 函数的混合均值. . . . . . . . . . . . 4 1.3 关于F.Smarandache 函数S(mn) 的渐近性质. . . . . . . . 6 1.4 复合函数S(Z(n)) 的均值. . . . . . . . . . . . . . . . 7 1.5 是否为整数的问题. . . . . . . . . . . . . . . 10 1.6 关于函数S(n) 的一个方程. . . . . . . . . . . . . . . 13 1.7 关于函数S(nk) 的一个方程. . . . . . . . . . . . . . . 15 1.8 关于Smarandache 函数值的分布. . . . . . . . . . . . . 17 1.9 S(ak(n)) 函数的值分布. . . . . . . . . . . . . . . . . 21 1.10 两个包含Smarandache 函数的方程. . . . . . . . . . . . 25 1.11 S(n) 函数及其均值. . . . . . . . . . . . . . . . . . 27 第二章Smarandache 对偶函数 . . . . . . . . . . . . . . . . .30 2.1 引言. . . . . . . . . . . . . . . . . . . . . . . . 30 2.2 Smarandache 对偶函数的渐近公式. . . . . . . . . . . . 30 2.3 关于Smarandache 对偶函数的一个方程. . . . . . . . . . 33 2.4 关于Smarandache 对偶函数S¤¤(n) . . . . . . . . . . . 37 2.5 一个包含SM(n) 函数的方程. . . . . . . . . . . . . . 40 2.6 一个包含Smarandache 对偶函数的方程. . . . . . . . . . 44 第三章关于SL(n) 函数及其对偶函数的性质 . . . . . . . . . . . . . . . . .48 3.1 引言. . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 SL(n) 函数的渐近公式. . . . . . . . . . . . . . ....

Read More
  • Cover Image

Theory and Practice in Construction Project Bidding & Purchase

By: Linfan Mao

A how to book on Chinese construction, in theory and practice.

Abstract: A tendering is a negotiating process for a contract through by a tenderer issuing an invitation, bidders submitting bidding documents and the tenderer accepting a bidding by sending out a notification of award. It is a main measure for completing market economy in China. According to laws and new regulations, rulers and codes new issued, this book introduces fundamental knowledge and techniques in theory and practice for a construction contract by bids, such as those of macro-economic policies, investing and constructing management, the tendering and bidding law with its regulations and how to compile a qualification document for a designing, consulting, constructing, purchasing project or a corporate body of a project management. By Smarandache multi-spaces, a mathematical evaluation model for bids is established and examples are included. The Tendering and Bidding Law of China, 5 regulations related and 100 answers for tendering and bidding in China can be found in the attachment. It is referable to researchers on theory or persons working in purchasing and students in universities....

Read More
  • Cover Image

A Unifying Field in Logics : Neutrosophic Logic, Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics (Traditional Chinese)

By: Florentin Smarandache; Feng Lui, Translator

科学面临的难题 _ 中智学为何诞生 中智学(neutrosophy)起源于1995年美国, 它站在东西文化交融的立场上, 从对立统一的角度探索从科学技术到文学艺术的一切宏观及微观结构, 构造超越一切学科、超越自然科学与社会科学界限的统一场, 以解决当今认知科学、信息科学、系统科学、经济学、量子力学等科学技术前沿难题——非确定性问题。中智学努力通过新型开放模式改造当今各自然科 与社会科学, 实现它们的新陈代谢、改革创新和更新换代。中智学在我们中国还属空白, 故借 对学科正式命名并引入中国。...

中智学, 新的哲学分支 _(Neutrosophy - A New Branch of Philosophy) 摘要: 本文推出了一个新的哲学分支, 中智学 _(neutrosphy), 研究中性的起源、本质和范畴以及和不同思想观念的作用。它的基本点是: 任何观念具有T%的真实性、I%的不确定性以及 的谬误性, 其中T, I, F为╟-0, 1+╢的标准或非标准子集。 _基本理论:任何观念 _ 趋于被 _ 所中和、削弱和平衡 _(不仅仅是被黑格尔主 的), 达到一种平衡状态。 中智学是中智逻辑学 _(在模糊逻辑的基础上总结出来的多值逻辑)、中智集合论 _(模糊 合论的概括总结)、中智概率论和中智统计学 _(分别是经典及非精确概率论、统计学的概括 结) 的基础。 _ 关键字与短语: 非标准分析, 超实数, 无穷小, 单子, 非标准实数单位区间, 集合运算。 _...

译者序 _Preface by the Translator ........................................5 作者简介 _Author’s Biography ..........................................9 译者简介 _Biography of the Translator.................................12 原书前言 _查尔斯·李 _.....................................................19 Preface by Charles T. Le 0.引言: 非标准实数单位区间 _.......................................24 Introduction: The Non-Standard Real Unit Interval 1.中智学——哲学的崭新分支 _.......................................27 Neutrosophy - a new branch of philosophy 2.中智逻辑——逻辑学的统一 _........................................90 Neutrosophic Logic - a unifying field in logics 3.中智集合论——集合论的统一 _....................................109 Neutrosophic Set - a unifying field in sets 4.中智概率论 _..........................................................113 ——传统概率论和非精确概率论的概括总结 _ ——以及中智统计学 _ Neutrosophic Probability - a generalization of classical and imprecise probabilities - and Neutrosophic Statistics 附录: 中智学产生的定义 _..............................................117 Addenda: Definitions derived from Neutrosophics...

Read More
  • Cover Image

A Unifying Field in Logics : Neutrosophic Logic, Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics (Simplified Chinese)

By: Florentin Smarandache; Feng Lui, Translator

1. 科学面临的难题 中智学为何诞生 中智学(neutrosophy)起源于1995年美国, 它站在东西文化交融的立场上, 从对立统一的角度探索从科学技术到文学 艺术的一切宏观及微观结构, 构造超越一切学科、超越自然科学与社会科学界限的统一场, 以 决当今认知科学、信息 科学、系统科学、经济学、量子力学等科学技术前沿难题——非确定性问题。中智学努力通 新型开放模式改造当今 各自然科学与社会科学, 实现它们的新陈代谢、改革创新和更新换代。中智学在我们中国还 空白, 故借此对学科正式 命名并引入中国。...

中智学, 新的哲学分支(Neutrosophy - A New Branch of Philosophy) 摘要: 本文推出了一个新的哲学分支, 中智学 (neutrosphy), 研究中性的起源、本质和范畴以及和不同思想观念的 作用。它的基本点是: 任何观念具有T%的真实性、I%的不确定性以及 F%的谬误性, 其中T, I, F 为╟-0, 1+╢的标准或 非标准子集。 基本理论:任何观念 趋于被 所中和、削弱和平衡 (不仅仅是被黑格尔主张的), 达到一种 平衡状态。 中智学是中智逻辑学 (在模糊逻辑的基础上总结出来的多值逻辑)、中智集合论 (模糊集合论的概括总结)、中智概 率论和中智统计学 (分别是经典及非精确概率论、统计学的概括总结) 的基础。 关键字与短语: 非标准分析, 超实数, 无穷小, 单子, 非标准实数单位区间, 集合运算。...

译者序 Preface by the Translator ..................................5 作者简介 Author’s Biography ..............................9 译者简介 Biography of the Translator...........................12 原书前言 查尔斯·李 ............................................18 Preface by Charles T. Le 0.引言: 非标准实数单位区间 ..............................23 Introduction: The Non-Standard Real Unit Interval 1.中智学——哲学的崭新分支 ..............................26 Neutrosophy - a new branch of philosophy 2.中智逻辑——逻辑学的统一 ...............................83 Neutrosophic Logic - a unifying field in logics 3.中智集合论——集合论的统一 ..............................100 Neutrosophic Set - a unifying field in sets 4.中智概率论 ...........................................103 ——传统概率论和非精确概率论的概括总结 ——以及中智统计学 Neutrosophic Probability - a generalization of classical and imprecise probabilities - and Neutrosophic Statistics 附录: 中智学产生的定义 ..................................106 Addenda: Definitions derived from Neutrosophics...

Read More
  • Cover Image

Romance of the Three Kingdoms

By: Luo Guanzhong

Romance of the Three Kingdoms, written by Luo Guanzhong in the 14th century, is a historical novel set amidst the turbulent years near the end of the Han Dynasty and the Three Kingdoms era of Chinese history, starting in 169 CE and ending with the reunification of the land in 280 CE. The story (part historical, part legend, and part myth) romanticizes and dramatizes the lives of feudal lords and their retainers, who tried to replace the dwindling Han Dynasty or restore it. While the novel actually follows literally hundreds of characters, the focus is mainly on the three power blocs that emerged from the remnants of the Han Dynasty, and would eventually form the three states of Cao Wei, Shu Han, and Eastern Wu. The novel deals with the plots, personal and army battles, intrigues, and struggles of these states to achieve dominance for almost 100 years. This novel also gives readers a sense of how the Chinese view their history in a cyclical lens. The famous opening lines of the novel (as added by Mao Lun and his son Mao Zonggang) summarize this view: It is a general truism of this world that anything long divided will surely unite...

Read More
  • Cover Image

心宇将灭万事休 : 心宇将灭, Volume 1: 心宇将灭

By: yuxiaoming xiaoming yu; yuxiaoming xiaoming yu

本作品是一部虛構的近代言情歷史小說,故事含沙射影地道出了上個世紀40年代的歷史變遷,幾位主人公糾結著自己的歷史問題

本作品是一部虛構的近代言情歷史小說,故事含沙射影地道出了上個世紀40年代的歷史變遷,幾

第一章 第二章 第三章 第四章 第五章 第六章 第七章

Read More
  • Cover Image

心宇将灭万事休 : 心宇将灭万事休, Volume 1: 心宇将灭万事休

By: 俞小明 俞小明 xiaoming; 俞小明 俞小明 yu

本作品是一部虛構的近代言情歷史小說,故事含沙射影地道出了上個世紀40年代的歷史變遷,幾位主人公糾結著自己的歷史問題

本作品是一部虛構的近代言情歷史小說,故事含沙射影地道出了上個世紀40年代的歷史變遷,幾

第一章 第二章 第三章 第四章 第五章 第六章 第七章

Read More
  • Cover Image

心宇将灭万事休 : 心宇将灭万事休, Volume 1: 心宇将灭万事休

By: 俞小明 俞小明 xiaoming; 俞小明 俞小明 yu

本作品是一部虛構的近代言情歷史小說,故事含沙射影地道出了上個世紀40年代的歷史變遷,幾位主人公糾結著自己的歷史問題,因為頂著一個「漢奸罪名」而惶惶不可終日,最終,侍女小倩為了報答碧城小姐的恩情選擇了犧牲自己,書中展現了幾位主人公的情感糾葛,不僅故事趣味可口,也有許多值得人們思辨的地方。

本作品是一部虛構的近代言情歷史小說,故事含沙射影地道出了上個世紀40年代的歷史變遷,幾位主人公糾結著自己的歷史問題,因為頂著一個「漢奸罪名」而惶惶不可終日,最終,侍女小倩為了報答碧城小姐的恩情選擇了犧牲自己,書中展現了幾位主人公的情感糾葛,不僅故事趣味可口,也有許多值得人們思辨的地方。

第一章 第二章 第三章 第四章 第五章 第六章 第七章

Read More
  • Cover Image

心宇将灭万事休 : 心宇将灭万事休, Volume 1: 心宇将灭万事休

By: 俞小明 俞小明 yuxiaoming; 俞小明 俞小明 yy

本作品是一部虛構的近代言情歷史小說,故事含沙射影地道出了上個世紀40年代的歷史變遷,幾位主人公糾結著自己的歷史問題,因為頂著一個「漢奸罪名」而惶惶不可終日,最終,侍女小倩為了報答碧城小姐的恩情選擇了犧牲自己,書中展現了幾位主人公的情感糾葛,不僅故事趣味可口,也有許多值得人們思辨的地方。

本作品是一部虛構的近代言情歷史小說,故事含沙射影地道出了上個世紀40年代的歷史變遷,幾位主人公糾結著自己的歷史問題,因為頂著一個「漢奸罪名」而惶惶不可終日,最終,侍女小倩為了報答碧城小姐的恩情選擇了犧牲自己,書中展現了幾位主人公的情感糾葛,不僅故事趣味可口,也有許多值得人們思辨的地方。

第一章 第二章 第三章 第四章 第五章 第六章 第七章

Read More
  • Cover Image

自由撰稿人填詞集 : 自由撰稿人填詞集: 自由撰稿人填詞集

By: xiaoming xiaoming yu

目錄 《一線懸》 《遊子吟》 《無情過客》 《騙》 《想散就散》 《情面》 《終於愛上你》 《寂寞呼叫轉移》 《五月的雨露》 《海神》 《譚嗣同之歌》 《夜飄萍》

何謂古典自由詩派? 就新詩於歌詞的內容與形式關係的看法,談談作者的一些看法: 1)儘管古今中外,文學革命都從「文的形式」解放做起。新文學也是從語言、文字、文體的解放做起,然而自五四新文化運動以來,舊有的古典文學精華逐漸不被世人所注重,文的形式雖然得到解放,然而經不起歷史長河的考驗,劣質的文學語言和網路文學一度衝擊傳統文學,一度使得糟粕文學佔據文學世界的主流,古典自由詩派既兼顧新文學的形式解放,又汲取古典文學中的精華,使二者有機的融合在一起,誕生出了獨特的文體,既所謂的「古典自由派」。 2)古典自由詩派一直沿襲「詩體的大解放」。須「不拘格律,不拘平仄,不拘長短,有甚麼題目,做甚麼詩;詩該怎樣做,就怎樣做。」以語言的「自然的音節」為原則。 3)形式上的束縛使精神不能自由發展,內容不能充份表現。古典自由詩派解除了形式的束縛,將細密的觀察、曲折的理想、細膩的感情用微妙的文字表達出來,同時引經據典吸納古典文學元素、結合網路上流行文化,進行新的創作,包括歌曲的重新填詞,詩歌的創作等等。 古典自由詩派不追求押韻、平仄、對偶等作法;但講求「詩情」、「哲理」、「幻象」,更加注重詩的情節,使得詩歌更具有故事性和機構性,融合進了「玄幻」、「言情」、「懸疑」等短篇網路小說的情節架構,使得詩歌既有抽象部分亦有情節寫實作為鋪墊,在文字使用方面,更加強調字字珠璣,長話短說。...

目錄 《一線懸》 《遊子吟》 《無情過客》 《騙》 《想散就散》 《情面》 《終於愛上你》 《寂寞呼叫轉移》 《五月的雨露》 《海神》 《譚嗣同之歌》 《夜飄萍》

Read More
       
1
Records: 1 - 14 of 14 - Pages: 
 
 





Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.