World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000085751
Reproduction Date:

Title: Stomata  
Author: World Heritage Encyclopedia
Language: English
Subject: Wheat, Cellular automaton, Bryophyte, Zamiaceae, Rhynie chert, Dioon edule, Plant
Publisher: World Heritage Encyclopedia


For natural and surgically created body openings, see Stoma (medicine).

In botany, a stoma (plural stomata) (occasionally called a stomate, plural stomates)[1] (from Greek στόμα, "mouth"[2]) is a pore, found in the epidermis of leaves, stems and other organs that is used to control gas exchange. The pore is bordered by a pair of specialized parenchyma cells known as guard cells that are responsible for regulating the size of the opening. The term is also used collectively to refer to an entire stomatal complex, both the pore itself and its accompanying guard cells.[3] Air containing carbon dioxide and oxygen enters the plant through these openings and is used in photosynthesis in the mesophyll cells (parenchyma cells with chloroplasts) and respiration, respectively. Oxygen produced as a by-product of photosynthesis diffuses out to the atmosphere through these same openings. Also, water vapor is released into the atmosphere through these pores in a process called transpiration.

Stomata are present in the sporophyte generation of all land plant groups except liverworts. Dicotyledons usually have more stomata on the lower epidermis than the upper epidermis. Monocotyledons, on the other hand, usually have the same number of stomata on the two epidermes. In plants with floating leaves, stomata may be found only on the upper epidermis; submerged leaves may lack stomata entirely.


CO2 gain and water loss

Carbon dioxide, a key reactant in photosynthesis, is present in the atmosphere at a concentration of about 390 ppm (as of December 2011). Most plants require the stomata to be open during daytime. The problem is that the air spaces in the leaf are saturated with water vapour, which exits the leaf through the stomata (this is known as transpiration). Therefore, plants cannot gain carbon dioxide without simultaneously losing water vapour.[4]

Alternative approaches

Ordinarily, carbon dioxide is fixed to ribulose-1,5-bisphosphate (RuBP) by the enzyme RuBisCO in mesophyll cells exposed directly to the air spaces inside the leaf. This exacerbates the transpiration problem for two reasons: first, RuBisCo has a relatively low affinity for carbon dioxide, and second, it fixes oxygen to RuBP, wasting energy and carbon in a process called photorespiration. For both of these reasons, RuBisCo needs high carbon dioxide concentrations, which means wide stomatal apertures and, as a consequence, high water loss.

Narrower stomatal apertures can be used in conjunction with an intermediary molecule with a high carbon dioxide affinity, PEPcase (Phosphoenolpyruvate carboxylase). Retrieving the products of carbon fixation from PEPCase is in an energy-intensive process, however. As a result, the PEPCase alternative is preferable only where water is limiting but light is plentiful, or where high temperatures increase the solubility of oxygen relative to that of carbon dioxide, magnifying RuBisCo's oxygenation problem.

CAM plants

A group of mostly desert plants called "CAM" plants (Crassulacean acid metabolism, after the family Crassulaceae, which includes the species in which the CAM process was first discovered) open their stomata at night (when water evaporates more slowly from leaves for a given degree of stomatal opening), use PEPcarboxylase to fix carbon dioxide and store the products in large vacuoles. The following day, they close their stomata and release the carbon dioxide fixed the previous night into the presence of RuBisCO. This saturates RuBisCO with carbon dioxide, allowing minimal photorespiration. This approach, however, is severely limited by the capacity to store fixed carbon in the vacuoles, so it is preferable only when water is severely limiting.

Opening and closure

However, most plants do not have the aforementioned facility and must therefore open and close their stomata during the daytime in response to changing conditions, such as light intensity, humidity, and carbon dioxide concentration. It is not entirely certain how these responses work. However, the basic mechanism involves regulation of osmotic pressure.

When conditions are conducive to stomatal opening (e.g., high light intensity and high humidity), a proton pump drives protons (H+) from the guard cells. This means that the cells' electrical potential becomes increasingly negative. The negative potential opens potassium voltage-gated channels and so an uptake of potassium ions (K+) occurs. To maintain this internal negative voltage so that entry of potassium ions does not stop, negative ions balance the influx of potassium. In some cases, chloride ions enter, while in other plants the organic ion malate is produced in guard cells. This increase in solute concentration lowers the water potential inside the cell, which results in the diffusion of water into the cell through osmosis. This increases the cell's volume and turgor pressure. Then, because of rings of cellulose microfibrils that prevent the width of the guard cells from swelling, and thus only allow the extra turgor pressure to elongate the guard cells, whose ends are held firmly in place by surrounding epidermal cells, the two guard cells lengthen by bowing apart from one another, creating an open pore through which gas can move.[5]

When the roots begin to sense a water shortage in the soil, abscisic acid (ABA) is released.[6] ABA binds to receptor proteins in the guard cells' plasma membrane and cytosol, which first raises the pH of the cytosol of the cells and cause the concentration of free Ca2+ to increase in the cytosol due to influx from outside the cell and release of Ca2+ from internal stores such as the endoplasmic reticulum and vacuoles.[7] This causes the chloride (Cl-) and inorganic ions to exit the cells. Second, this stops the uptake of any further K+ into the cells and, subsequently, the loss of K+. The loss of these solutes causes an increase in water potential, which results in the diffusion of water back out of the cell by osmosis. This makes the cell plasmolysed, which results in the closing of the stomatal pores.

Guard cells have more chloroplasts than the other epidermal cells from which guard cells are derived. Their function is controversial.[8][9]

Inferring stomatal behavior from gas exchange

The degree of stomatal resistance can be determined by measuring leaf gas exchange of a leaf. The transpiration rate is dependent on the diffusion resistance provided by the stomatal pores, and also on the humidity gradient between the leaf's internal air spaces and the outside air. Stomatal resistance (or its inverse, stomatal conductance) can therefore be calculated from the transpiration rate and humidity gradient. This allows scientists to investigate how stomata respond to changes in environmental conditions, such as light intensity and concentrations of gases such as water vapor, carbon dioxide, and ozone.[10] Evaporation (E) can be calculated as;[11]

E = (e_{i} - e_{a})/Pr

where ei and ea are the partial pressures of water in the leaf and in the ambient air, respectively, P is atmospheric pressure, and r is stomatal resistance. The inverse of r is conductance to water vapor (g), so the equation can be rearranged to;[11]

E = (e_{i} - e_{a})g/P

and solved for g;[11]

g = EP / (e_{i} - e_{a})

Photosynthetic CO2 assimilation (A) can be calculated from

A = (C_{a} - C_{i})g/1.6P

where Ca and Ci are the atmospheric and sub-stomatal partial pressures of CO2, respectively. The rate of evaporation from a leaf can be determined using a photosynthesis system. These scientific instruments measure the amount of water vapour leaving the leaf and the vapor pressure of the ambient air. Photosynthetic systems may calculate water use efficiency (A/E), g, intrinsic water use efficiency (A/g), and Ci. These scientific instruments are commonly used by plant physiologists to measure CO2 uptake and thus measure photosynthetic rate.[12]


The fossil record has little to say about the evolution of stomata.[13] They may have evolved by the modification of conceptacles from plants' alga-like ancestors.[14] It is clear, however, that the evolution of stomata must have happened at the same time as the waxy cuticle was evolving - these two traits together constituted a major advantage for early terrestrial plants.


There are three major epidermal cell types which all ultimately derive from the L1 tissue layer of the shoot apical meristem, called protodermal cells: trichomes, pavement cells and guard cells, all of which are arranged in a non-random fashion.

Production is reliant on interactions between SPCH (speechless), EPF (downregulates stomata), TMM (too many mouths, downregulates stomata) and stomagen (upregulates stomata, inhibits SPCH), ERL and YODA downregulate stomata too.

Stomata positioning is down to CO2 activating EPF1, which activates TMM/ERL which together activate YODA, YODA in turn inhibits SPCH, in turn SPCH activation decreases, allowing asymmetry.

An asymmetrical cell division occurs in protodermal cells resulting in one large cell that is fated to become a pavement cell and a smaller cell called a meristemoid that will eventually differentiate into the guard cells that surround a stoma. This meristemoid then divides asymmetrically one to three times before differentiating into a guard mother cell. The guard mother cell then makes one symmetrical division, which forms a pair of guard cells.[15]

Stomata as pathogenic pathways

Stomata are an obvious hole in the leaf by which, as was presumed for a while, pathogens can enter unchallenged. However, it has been recently shown that stomata do in fact sense the presence of some, if not all, pathogens. However, with the virulent bacteria applied to Arabidopsis plant leaves in the experiment, the bacteria released the chemical coronatine, which forced the stomata open again within a few hours.[16]


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.