World Library  
Flag as Inappropriate
Email this Article

Vasopressin receptor antagonist

Article Id: WHEBN0020697876
Reproduction Date:

Title: Vasopressin receptor antagonist  
Author: World Heritage Encyclopedia
Language: English
Subject: Vasopressin, ATC code C03, Water intoxication, Arginine vasopressin receptor 2, Vasopressin receptor, Lixivaptan
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Vasopressin receptor antagonist

A vasopressin receptor antagonist (VRA) is an agent which interferes with action at the vasopressin receptors. Most commonly VRAs are used in the treatment of hyponatremia, especially in patients with congestive heart failure, liver cirrhosis or SIADH.[1]

Types

Tetracyclines

Demeclocycline, a tetracycline antibiotic, is sometimes used to block the action of vasopressin in the kidney in hyponatremia due to inappropriately high secretion of vasopressin (SIADH), when fluid restriction has failed.[2]

Vaptans

A new class of medication, the "vaptan" drugs, act by inhibiting the action of vasopressin on its receptors (V1A, V1B and V2). These receptors have a variety of functions, with the V1A and V2 receptors are expressed peripherally and involved in the modulation of blood pressure and kidney function respectively, while the V1A and V1B receptors are expressed in the central nervous system. V1A is expressed in many regions of the brain, and has been linked to a variety of social behaviors in humans and animals.

The vaptan class of drugs contains a number of compounds with varying selectivity, several of which are either already in clinical use or in clinical trials as of 2009.[3][4][5]

Unselective (mixed V1A/V2)
V1A selective (V1RA)
V1B selective (V3RA)
V2 selective (V2RA)

Uses of Vasopressin receptor antagonists

Hyponatremia

V2R antagonists have become a mainstay of treatment for euvolemic (i.e., SIADH, postoperative hyponatremia) and hypervolemic hyponatremia (i.e., CHF and cirrhosis).[6] V2RAs predictably cause aquaresis leading to increased [Na+] in majority of patients with hyponatremia due to SIADH, CHF, and cirrhosis. The optimum use of VRAs has not yet been determined, but some predictions can be made with reasonable certainty. For hyponatremia in hospitalized patients, who are unable to take medication orally or for those in whom a more rapid correction of hyponatremia is desired, conivaptan (V1/V2R antagonist) will likely be the preferred agent. Selective V2R antagonists such as tolvaptan, lixivaptan etc. will likely be useful in patients for whom oral therapy is suitable and for more chronic forms of hyponatremia.[6]

Congestive heart failure

Neurohormonal activation characteristic of CHF, including increased renin, angiotensin, aldosterone, and catecholamines, contributes to progression of CHF. It has been suggested that cardiovascular mortality may be reduced by selective V2RA such as tolvaptan in the higher risk group with kidney function impairment or severe congestive findings.[6] But until FDA indication is granted for use in CHF with or without accompanying hyponatremia, VRAs are not recommended in patients with CHF.[6]

Cirrhosis

V2RA may be particularly beneficial in the treatment of patients with advanced liver cirrhosis and ascites.[7] Blockade of V2R will induce an effective aquaresis and inhibition of V2-mediated vasodilation. This aquaresis, in combination with a diuresis, may provide a potential therapy for patients with resistant ascites. V2 receptor antagonism increases plasma vasopressin concentration, which may cause unopposed hyperstimulation of the vasoconstrictor V1 receptor. Given the potential hyperstimulation of V1R, V2RA may have additional secondary preventative benefits in patients with cirrhosis through a reduction in portal pressure and a decreased risk of variceal bleeding.[7]

Polycystic kidney disease

Polycystin defects increase intracellular cAMP, secondary messenger for vasopressin acting at V2R, leading to cyst development.[6] cAMP-dependent genes promote fluid secretion into developing renal cysts and increase cell proliferation. Studies in several animal models of polycystic kidney disease have shown a reduction in kidney size and cyst volume after treatment with specific V2 receptor antagonist.[6] Full scale therapeutic trials of V2RAs in patients with autosomal dominant polycystic kidney disease are currently ongoing.[6]

Nephrogenic diabetes insipidus

Congenital nephrogenic diabetes insipidus (NDI) may result from V2R or aquaporin-2 (AQP2) mutations. Exogenously administered V2R antagonists can bind to misfolded intracellular V2R, and improve transport of V2R to the cell membrane.[6] Clinical studies in patients with X-linked NDI showed that the selective V1R antagonist relcovaptan (SR49059, Sanofi-Aventis) significantly increased urine osmolality and decreased 24-hour urine flow.[6] Thus V1R and/or V2R antagonists may serve as molecular chaperones to mitigate misfolding defects in selected patients with type 2 NDI.[6]

References

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.